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PREFACE

The objective of this book is to give, in a concise and unified
fashion, the major results, techniques of analysis and new directions of
research in adaptive systems. Such a treatment is particularly timely,
given the rapid advances in microprocessor and multi-processor technol-
ogy which make it possible to implement the fairly complicated non-
linear and time varying control laws associated with adaptive control.
Indeed, limitations to future growth can hardly be expected to be com-
putational, but rather from a lack of a fundamental understanding of the
methodologies for the design, evaluation and testing of the algorithms.
Our objective has been to give a clear, conceptual presentation of adap-
tive methods, to enable a critical evaluation of these techniques and sug-
gest avenues of further development.

Adaptive control has been the subject of active research for over
three decades now. There have been many theoretical successes, includ-
ing the development of rigorous proofs of stability and an understanding
of the dynamical properties of adaptive schemes. Several successful
applications have been reported and the last ten years have seen an
impressive growth in the availability of commercial adaptive controllers.

In this book, we present the deterministic theory of identification
and adaptive control. For the most part the focus is on linear, continu-
ous time, single-input single-output systems. The presentation includes
the algorithms, their dynamical properties and tools for analysis—
including the recently introduced averaging techniques. Current research
in the adaptive control of multi-input, multi-output linear systems and a

XV



Xvi Preface

class of nonlinear systems is also covered. Although continuous time
algorithms occupy the bulk of our interest, they are presented in such a
way as to enable their transcription to the discrete time case.

A brief outline of the book is as follows: Chapter 0 is a brief his-
torical overview of adaptive control and identification, and an introduc-
tion to various approaches. Chapter 1 is a chapter of mathematical pre-
liminaries containing most of the key stability results used later in the
book. In Chapter 2, we develop several adaptive identification algo-
rithms along with their stability and convergence properties. Chapter 3
is a corresponding development for model reference adaptive control. In
Chapter 4, we give a self contained presentation of averaging techniques
and we analyze the rates of convergence of the schemes of Chapters 2
and 3. Chapter 5 deals with robustness properties of the adaptive
schemes, how to analyze their potential instability using averaging tech-
niques and how to make the schemes more robust. Chapter 6 covers
some advanced topics: the use of prior information in adaptive
identification schemes, indirect adaptive control as an extension of
robust non-adaptive control and multivariable adaptive control.
Chapter 7 gives a brief introduction to the control of a class of nonlinear
systems, explicitly linearizable by state feedback and their adaptive con-
trol using the techniques of Chapter 3. Chapter 8 concludes with some
of our suggestions about the areas of future exploration.

This book is intended to introduce researchers and practitioners to
the current theory of adaptive control. We have used the book as a text
several times for a one-semester graduate course at the University of
California at Berkeley and at Carnegie-Mellon University. Some back-
ground in basic control systems and in linear systems theory at the gra-
duate level is assumed. Background in stability theory for nonlinear sys-
tems is desirable, but the presentation is mostly self-contained.
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CHAPTER 0
INTRODUCTION

0.1 IDENTIFICATION AND ADAPTIVE CONTROL

Most current techniques for designing control systems are based on a
good understanding of the plant under study and its environment. How-
ever, in a number of instances, the plant to be controlled is too complex
and the basic physical processes in it are not fully understood. Control
design techniques then need to be augmented with an identification tech-
nique aimed at obtaining a progressively better understanding of the
plant to be controlled. It is thus intuitive to aggregate system
identification and control, Often, the two steps will be taken separately.
If the system identification is recursive—that is the plant model is
periodically updated on the basis of previous estimates and new data—
identification and control may be performed concurrently. We will see
adaptive control, pragmatically, as a direct aggregation of a (non-
adaptive) control methodology with some Jorm of recursive system
identification.

Abstractly, system identification could be aimed at determining if
the plant to be controlled is linear or nonlinear, finite or infinite dimen-
sional, and has continuous or discrete event dynamics. Here we will res-
trict our attention to finite dimensional, single-input single-output linear
plants, and some classes of multivariable and nonlinear plants. Then, the
primary step of system identification (structural identification) has
already been taken, and only parameters of a fixed type of model need to
be determined. Implicitly, we will thus be limiting ourselves to
parametric system identification, and parametric adaptive control.



2 Introduction

Applications of such systems arise in several contexts: advanced flight
control systems for aircraft or spacecraft, robot manipulators, process
control, power systems, and others.

Adaptive control, then, is a technique of applying some system
identification technique to obtain a model of the process and its environ-
ment from input-output experiments and using this model to design a
controller. The parameters of the controller are adjusted during the
operation of the plant as the amount of data available for plant
identification increases. For a number of simple PID (proportional +
integral + derivative) controllers in process control, this is often done
manually. However, when the number of parameters is larger than three
or four, and they vary with time, automatic adjustment is needed. The
design techniques for adaptive systems are studied and analyzed in
theory for unknown but fixed (that is, time invariant) plants. In practice,
they are applied to slowly time-varying and unknown plants.

Overview of the Literature

Research in adaptive control has a long and vigorous history. In the
1950s, it was motivated by the problem of designing autopilots for air-
craft operating at a wide range of speeds and altitudes. While the object
of a good fixed-gain controller was to build an autopilot which was
insensitive to these (large) parameter variations, it was frequently
observed that a single constant gain controller would not suffice. Conse-
quently, gain scheduling based on some auxiliary measurements of
airspeed was adopted. With this scheme in place several rudimentary
model reference schemes were also attempted—the goal in this scheme
was to build a self-adjusting controller which yielded a closed loop
transfer function matching a prescribed reference model. Several
schemes of self-adjustment of the controller parameters were proposed,
such as the sensitivity rules and the so-called M.L.T. rule, and were
verified to perform well under certain conditions. Finally, Kalman
[1958] put on a firm analytical footing the concept of a general self-
tuning controller with explicit identification of the parameters of a
linear, single-input, single-output plant and the usage of these parameter
estimates to update an optimal linear quadratic controller.

The 1960s marked an important time in the development of con-
trol theory and adaptive control in particular. Lyapunov’s stability
theory was firmly established as a tool for proving convergence in adap-
tive control schemes. Stochastic control made giant strides with the
understanding of dynamic programming, due to Bellman and others.
Learning schemes proposed by Tsypkin, Feldbaum and others (see Tsyp-
kin [1971] and [1973]) were shown to have roots in a single unified
framework of recursive equations. System identification (off-line) was
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thoroughly researched and understood. Further, Parks [1966] found a
way of redesigning the update laws proposed in the 1950s for model
reference schemes so as to be able to prove convergence of his controller.

In the 1970s, owing to the culmination of determined efforts by
several teams of researchers, complete proofs of stability for several
adaptive schemes appeared. State space (Lyapunov based) proofs of sta-
bility for model reference adaptive schemes appeared in the work of
Narendra, Lin, & Valavani [1980] and Morse [1980]. In the late 1970s,
input output (Popov hyperstability based) proofs appeared in Egardt
[1979] and Landau [1979). Stability proofs in the discrete time deter-
ministic and stochastic case (due to Goodwin, Ramadge, & Caines
[1980]) also appeared at this time, and are contained in the textbook by
Goodwin & Sin [1984]. Thus, this period was marked by the culmina-
tion of the analytical efforts of the past twenty years.

Given the firns, analytical footing of the work to this point, the
1980s have proven to be a time of critical examination and evaluation of
the accomplishments to date. It was first pointed out by Rohrs and co-
workers [1982] that the assumptions under which stability of adaptive
schemes had been proven were very sensitive to the presence of unmo-
deled dynamics, typically high-frequency parasitic modes that were
neglected to limit the complexity of the controller. This sparked a flood
of research into the robustness of adaptive algorithms: a re-examination
of whether or not adaptive controllers were at least as good as fixed gain
controllers, the development of tools for the analysis of the transient
behavior of the adaptive algorithms and attempts at implementing the
algorithms on practical systems (reactors, robot manipulators, and ship
steering systems to mention only a few). The implementation of the
complicated nonlinear laws inherent in adaptive control has been greatly
facilitated by the boom in microelectronics and today, one can talk in
terms of custom adaptive controller chips. All this flood of research and
deve{opment is bearing fruit and the industrial use of adaptive control is
growing,.

Adaptive control has a rich and varied literature and it is impossi-
ble to do justice to all the manifold publications on the subject. It is a
tribute to the vitality of the field that there are a large number of fairly
recent books and monographs. Some recent books on recursive estima-
tion, which is an important part of adaptive control are by Eykhoff
[1974], Goodwin & Payne [1977], Ljung & Soderstrom [1983] and Ljung
[1987]. Recent books dealing with the theory of adaptive control are by
Landau [1979], Egardt [1979], Ioannou & Kokotovic [1984], Goodwin &
Sin [1984], Anderson, Bitmead, Johnson, Kokotovic, Kosut, Mareels,
Praly, & Riedle [1986], Kumar and Varaiya [1986], Polderman [1988]
and Caines [1988]. An attempt to link the signal processing viewpoint
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with the adaptive control viewpoint is made in Johnson [1988]. Surveys
of the applications of adaptive control are given in a book by Harris &
Billings [1981], and in books edited by Narendra & Monopoli [1980]
and Unbehauen [1980]. As of the writing of this book, two other books
on adaptive control by Astrom & Wittenmark and Narendra &
Annaswamy are also nearing completion.

In spite of the great wealth of literature, we feel that there is a need
for a “toolkit” of methods of analysis comparable to non-adaptive linear
time invariant systems. Further, many of the existing results concern
either algorithms, structures or specific applications, and a great deal
more needs to be understood about the dynamic behavior of adaptive
systems. This, we believe, has limited practical applications more than
it should have. Consequently, our objective in this book is to address
fundamental issues of stability, convergence and robustness. Also, we
hope to communicate our excitement about the problems and potential
of adaptive control. In the remainder of the introduction, we will review
some common approaches to adaptive control systems and introduce the
basic issues studied in this book with a simple example.

0.2 APPROACHES TO ADAPTIVE CONTROL

0.2.1 Gain Scheduling

One of the earliest and most intuitive approaches to adaptive control is
gain scheduling. It was introduced in particular in the context of flight
control systems in the 1950s and 1960s. The idea is to find auxiliary
process variables (other than the plant outputs used for feedback) that
correlate well with the changes in process dynamics. It is then possible
to compensate for plant parameter variations by changing the parame-
ters of the regulator as functions of the auxiliary variables. This is illus-
trated in Figure 0.1,

Gain AUXILIARY
Scheduler [ MEASUREMENT

4
COMONAAND 6 | CONTROLLER

REFERENGE PARAMETER
i
SIGNAL PLANT
——] CONTROL OUTPUT
Controller »  Plant > Yp
> INPUT
u

Figure 0.1: Gain Scheduling Controller
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The advantage of gain scheduling is that the parameters can be
changed quickly (as quickly as the auxiliary measurement) in response to
changes in the plant dynamics. It is convenient especially if the plant
dynamics depend in a well-known fashion on a relatively few easily
measurable variables. In the example of flight control systems, the
dynamics depend in relatively simple fashion on the readily available
dynamic pressure—that is the product of the air density and the relative
velocity of the aircraft squared.

Although gain scheduling is extremely popular in practice, the
disadvantage of gain scheduling is that it is an open-loop adaptation
scheme, with no real “learning” or intelligence. Further, the extent of
design required for its implementation can be enormous, as was illus-
trated by the flight control system implemented on a CH-47 helicopter.
The flight envelope of the helicopter was divided into ninety flight condi-
tions corresponding to thirty discretized horizontal flight velocities and
three vertical velocities. Ninety controllers were designed, correspond-
ing to each flight condition, and a linear interpolation between these
controllers (linear in the horizontal and vertical flight velocities) was
programmed onto a flight computer. Airspeed sensors modified the con-
trol scheme of the helicopter in flight, and the effectiveness of the design
was corroborated by simulation.

0.2.2 Model Reference Adaptive Systems

Again in the context of flight control systems, two adaptive control
schemes other than gain scheduling were proposed to compensate for
changes in aircraft dynamics: a series, high-gain scheme, and a parallel
scheme.

Series High-Gain Scheme
Figure 0.2 shows a schematic of the series high-gain scheme.

r PLANT
REFERENCE Yu + igh Gai u ouTP
Reference 7 High Gain s—»  Plant > ¥p
SIGNAL Model - Servo, k :

T
L

Galn Limit Cycle
- Adjustment Detector

Figure 0.2: Model Reference Adaptive Control—Series,
High-Gain Scheme
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The reference model represents a pilot’s desired command-response
characteristic. It is thus desired that the aircraft response, that is, the
output y,, matches the output of the reference model, that is, y,,.

The simple analysis that goes into the scheme is as follows: con-
sider I3(s) to be the transfer function of the linear, time invariant plant
and k the constant gain of the servo. The transfer function from y,, to
Yy is k Is(s)/l +k13(s). When the gain k& is sufficiently large, the
transfer function is approximately 1 over the frequencies of interest, so
that y,, ~ y,.

The aim of the scheme is to let the gain & be as high as possible, so
that the closed-loop transfer function becomes close to 1, until the onset
of instability (a limit cycle) is detected. If the limit cycle oscillations
exceed some level, the gain is decreased. Below this level, the gain is
increased. The limit cycle detector is typically just a rectifier and low-
pass filter.

The series high-gain schéme is intuitive and simple: only one
parameter is updated. However, it has the following problems

a)  Oscillations are constantly present in the system.

b) Noise in the frequency band of the limit cycle detector causes the
gain to decrease well below the critical value.

¢)  Reference inputs may cause saturation due to the high-gain.

d)  Saturation may mask limit cycle oscillations, allowing the gain to
increase above the critical value, and leading to instability.

Indeed, tragically, an expsrimental X-15 aircraft flying this control sys-
tem crashed in 1966 (cf. Staff of the Flight Research Center [1971]),
owing partially to the saturation problems occurring in the high-gain
scheme. The roll and pitch axes were controlled by the right and left
rear ailerons, using differential and identical commands respectively,
The two axes were assumed decoupled for the purpose of control design.
However, saturation of the actuators in the pitch axis caused the aircraft
to lose controllability in the roll axis (since the ailerons were at max-
imum deflection). Due to the saturation, the instability remained
undetected, and created aerodynamic forces too great for the aircraft to
withstand.

Parallel Scheme

As in the series scheme, the desired performance of the closed-loop sys-
tem is specified through a reference model, and the adaptive system
attempts to make the plant output match the reference model output
asymptotically. An early refere.ice to this scheme is Osburn, Whitaker,
& Kezer [1961). A block diagram is shown in Figure 0.3. The controller
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A
M
| REFERENCE YM__ Model
MODEL
Reference
Input
T
u Yp .
»{ CONTAOLLER »!  PLANT
. Control Plant
Input Output
t INNER LOOP
Controller ADJUSTMENT [

Parameter MECHANISM

QUTER LOOP
Figure 0.3: Model Reference Adaptive Control—Parallel Scheme

can be thought of as having two loops: an inner or regulator loop that is
an ordinary control loop consisting of the plant and regulator, and an
outer or adaptation loop that adjusts the parameters of the regulator in
such a way as to drive the error between the model output and plant
output to zero.

The key problem in the scheme is to obtain an adjustment mechan-
ism that drives the output error €0=Yp—Ym to zero. In the earliest
applications of this scheme, the following update, called the gradient
update, was used. Let the vector # contain the adjustable parameters of

the controller. The idea behind the gradient update is to reduce e (6)
by adjusting ¢ along the direction of steepest descent, that is

%f— = —g;;?(-,-(eé((f)) 0.2.1)

It

~28e00) 35 (o) = -2 L (5,0) (022

where g is a positive constant called the adaptation gain.

The interpretation of ey (8) is as follows: it is the output error (also
a function of time) obtained by freezing the controller parameter at 6.
The gradient of ey(6) with respect to 4 is equal to the gradient of y, with
respect to 6, since y,, is independent of 6, and represents the sensitivity
of the output error to variations in the controller parameter 6.
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Several problems were encountered in the usage of the gradient
update. The sensitivity function dy,(6) /86 usually depends on the unk-
nown plant parameters, and is consequently unavailable. At this point
the so-called M.I.T. rule, which replaced the unknown parameters by
their estimates at time ¢, was proposed. Unfortunately, for schemes
based on the M.L.T. rule, it is not possible in general to prove closed-
loop stability, or convergence of the output error to zero. Empirically, it
was observed that the M.LT. rule performed well when the adaptation
gain g and the magnitude of the reference input were small (a conclusion
later confirmed analytically by Mareels et a/ [1986]). However, examples
of instability could be obtained otherwise (cf. James [1971]).

Parks [1966] found a way of redesigning adaptive systems using
Lyapunov theory, so that stable and provably convergent model refer-
ence schemes were obtained. The update laws were similar to (0.2.2),
with the sensitivity dy, (6) /46 replaced by other functions. The stability
and convergence properties of model reference adaptive systems make
them particularly attractive and will occupy a lot of our interest in this
book.

0.2.3 Self Tuning Regulators

In this technique of adaptive control, one starts from a control design
method for known plants. This design method is summarized by a con-
troller structure, and a relationship between plant parameters and con-
troller parameters. Since the plant parameters are in fact unknown, they
are obtained using a recursive parameter identification algorithm. The
controller parameters are then obtained from the estimates of the plant
parameters, in the same way as if these were the true parameters. This is
usually called a certainty equivalence principle.

The resulting scheme is represented on Figure 0.4. An explicit
separation between identificatiun and control is assumed, in contrast to
the model reference schemes above, where the parameters of the con-
troller are updated directly to achieve the goal of model following. The
self tuning approach was originally proposed by Kalman [1958] and
clarified by Astrom & Wittenmark [1973]. The controller is called self
tuning, since it has the ability to tune its own parameters. Again, it can
be thought of as having two loops: an inner loop consisting of a conven-
tional controller, but with varying parameters, and an outer loop consist-
ing of an identifier and a design box (representing an on-line solution to
a design problem for a system with known parameters) which adjust
these controller parameters.

The self tuning regulator is very flexible with respect to its choice of
controller design methodology (linear quadratic, minimum variance,
gain-phase margin design, ...), and to the choice of identification scheme
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CONTROLLER | PLANT -
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Figure 0.4:  Self-tuning Controller

(least squares, maximum likelihood, extended Kalman filtering, ...). The
analysis of self tuning adaptive systems is however more complex than
the analysis of model reference schemes, due primarily to the (usually
nonlinear) transformation from identifier parameters to controller
parameters.

Direct and Indirect Adaptive Control

While model reference adaptive controllers and self tuning regulators
were introduced as different approaches, the only real difference between
them is that model reference schemes are direct adaptive control
schemes, whereas self tuning regulators are indirect. The self tuning
regulator first identifies the plant parameters recursively, and then uses
these estimates to update the controller parameters through some fixed
transformation. The model reference adaptive schemes update the con-
troller parameters directly (no explicit estimate or identification of the
plant parameters is made). It is easy to see that the inner or control
loop of a self tuning regulator could be the same as the inner loop of a
model reference design. Or, in other words, the model reference adap-
tive schemes can be seen as a special case of the self tuning regulators,
with an identity transformation between updated parameters and con-
troller parameters. Through this book, we will distinguish between
direct and indirect schemes rather than between model reference and self
tuning algorithms.
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0.2.4 Stochastic Control Approach

Adaptive controller structures based on model reference or self tuning
approaches are based on heuristic arguments. Yet, it would be appealing
to obtain such structures from a unified theoretical framework. This can
be done (in principle, at least) using stochastic control. The system and
its environment are described by a stochastic model, and a criterion is
formulated to minimize the expected value of a loss function, which is a
scalar function of states and controls. It is usually very difficult to solve
stochastic optimal control problems (a notable exception is the linear
quadratic gaussian problem). When indeed they can be solved, the
optimal controllers have the structure shown in Figure 0.5: an identifier
(estimator) followed by a nonlinear feedback regulator,

Reference Control Plant Output
Signat r Signal u
3> CONTROLLER PLANT ¥p
A
HYPERSTATE
CALCULATION
Hyperstate

Figure 0.5: “Generic” Stochastic Controller

The estimator generates the conditional probability distribution of the
state from the measurements: this distribution is called the Ayperstate
(usually belonging to an infinite dimensional vector space). The self
tuner may be thought of as an approximation of this controller, with the
hyperstate approximated by the process state and process parameters
estimate.

From some limited experience with stochastic control, the following
interesting observations can be made of the optimal control law: in
addition to driving the plant output to its desired value, the controller
introduces probing signals which improve the identification and, there-
fore future control. This, however, represents some cost in terms of con-
trol activity. The optimal regulator maintains a balance between the
control activity for learning about the plant it is controlling and the
activity for controlling the plant output to its desired value. This pro-
perty is referred to as dual control. While we will not explicitly study
stochastic control in this book, the foregoing trade-off will be seen
repeatedly: good adaptive control requires correct identification, and for
the identification to be complete, the controller signal has to be
sufficiently rich to allow for the excitation of the plant dynamics. The
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presence of this rich enough excitation may result in poor transient per-
formance of the scheme, displaying the trade-off between learning and
control performance.

0.3 A SIMPLE EXAMPLE

Adaptive control systems are difficult to analyze because they are non-
linear, time varying systems, even if the plant that they are controlling is
linear, time invariant, This leads to interesting and delicate technical
problems. In this section, we will introduce some of these problems
with a simple example. We also discuss some of the adaptive schemes
of the previous section in this context.

We consider a first order, time invariant, linear system with
transfer function
ky
s+a
where a >0 is known. The gain k, of the plant is unknown, but its sign

is known (say k,>0). The control objective is to get the plant output to
match a model output, where the reference model transfer function is

1
sS+a

P(s) =

(0.3.1)

M(@s) = (0.3.2)

Only gain compensation—or feedforward control—is necessary,
namely a gain 6 at the plant input, as is shown on Figure 0.6.

A

M
1 M
s+a
r - 8o
’F*, +
._.k_F_
s+a yp

Figure 0.6: Simple Feedforward Controller

Note that, if k, were known, 6 would logically be chosen to be 1/k,.
We will call-

9* = — (0.3.3)

the nominal vglue of the parameter 6, that is the value which realizes the
output matching objective for all inputs. The design of the various
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adaptive schemes proceeds as follows.

Gain Scheduling
Let v(t) € IR be some auxiliacy measurement that correlates in known

fashion with k,, say k,(t) = f(v(¢)). Then, the gain scheduler chooses at
time ¢

1

= Foan

(0.3.4)

Model Reference Adaptive Control Using the ML.L.T. Rule

To apply the M.IT. rule, we need to obtain deg(6)/d60 = dy,(0)/96,
with the understauding that 6 is frozen. From Figure 0.6, it is easy to

see that
9y,(0) ~ k, / )
—60 = 12 fr) = kpy . (0.3.5)

We see immediately that the sensitivity function in (0.3.5) depends on
the parameter k, which is unknown, so that dy,/d6 is not available.
However, the sign of k, is known (k, > 0), so that we may merge the con-
stant k, with the adaptation gain. The M.L.T rule becomes

0 = —geoVm g>0 (0.3.6)

Note that (0.3.6) prescribes an update of the parameter 6 in the direction
opposite to the “correlation” product of eq and the model output y,,.

Model Reference Adaptive Control Using the Lyapunov Redesign

The control scheme is exactly as before, but the parameter update law is
chosen to make a Lyapunov function decrease along the trajectories of
the adaptive system (see Chapter 1 for an introduction to Lyapunov
analysis). The plant and reference model are described by

-ay, + k,0r 0.3.7)

Vo

Vm = =@Ym+7r = —ay, + k0°r (0.3.8)
Subtracting (0.3.8) from (0.3.7), we get, with ¢y = y, — Y,

ég = —aey+ ky(0-0%)r (0.3.9)

Since we would like 6 to converge to the nominal value 6* = 1/k,, we
define the parameter error as

6 = 66 (0.3.10)
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Note that since 6* is fixed (though unknown), ¢ =9.

The Lyapunov redesign approach consists in finding an update law
so that the Lyapunov function

v(eo,d) = e§ + k,¢* 0.3.11)
is decreasing along trajectories of the error system
ég = —aey+ kyor
¢ = update law to be defined (0.3.12)

Note that since k,> 0, the function v(eg,¢) is a positive definite func-

tion. The derivative of v along the trajectories of the error system
(0.3.12) is given by

v (e, $) = -2ae} +2k,eqor + 2k, 00 (0.3.13)
Choosing the updat(gfz;llvzsZ
6 = ¢ = —epr (0.3.14)
yields
v(egp¢) = -2aef < 0 (0.3.15)

|

thereby guaranteeing that ed + kp¢2 is decreasing along the trajectories of
(0.3.12), (0.3.14) and that ey, and ¢ are bounded. Note that (0.3.}63‘ is
similar in form to (0.3.6), with the difference that g is correlated with r
rather that y,,. An adaptation gain g may also be included in (0.3.14).

Since v(eg,¢) is decreasing and bounded ‘below, it would appear

that eg-» 0 as ¢ -» co. This actually follows from further analysis, pro-
vided that r is bounded (cf. Barbalat’s lemma 1.2.1).

Having concluded that eg— 0 as ¢ — 0o, what can we say about 67
Does it indeed converge to §*=1/k,? The answer is that one can not

conclude anything about the convergence of 8 to 6* without extra condi-
tions on the reference input. Indeed, if the reference input was a con-
stant zero signal, there would be no reason to expect 6 to converge to 6.
Conditions for parameter convergence are important in adaptive control
and will be studied in great detail. An answer to this question for the
simple example will be given for the following indirect adaptive control
scheme.

5
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Indirect Adaptive Control (Self Tuning)

To be able to effectively compare the indirect scheme with the direct
schemes given before, we will assume that the control objective is still
model matching, with the same model as above. Figure 0.7 shows an
indirect or self tuning type of model reference adaptive controller.

L Ym

g8

9-/77

Figure 0.7: A Simple Indirect Controller

The identifier contains an identifier parameter «(¢) that is an esti-

mate of the unknown plant parameter k,. Therefore, we define #* = k,.
The controller parameter is chosen following the certainty equivalence

principle: since §* = 1/k, and =*=k,, we let 6(¢) =1/ =(¢). The hope is
that, as ¢ - co, 7(t) = k,, so that 6(¢) - 1 /k,.
The update law now is an update law for the identifier parameter

=(t). There are several possibilities at this point, and we proceed to
derive one of them. Define the identifier parameter error

wt) = w(t)-=" (0.3.16)
and let

1 1
= 0 =
e s+a(r) s+a

The signal w may be obtained by stable filtering of the input u, since
a>0 is known. The update law is based on the identifier error
e = TW-Y, (0.3.18)

Equation (0.3.18) is used in the actual implementation of the algorithm.
For the analysis, note that

(u) (0.3.17)
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_ b 9 : 0.3.19

Yo = Lo (0r) = aw 0.3.19)
so that

e = yw (0.3.20)
Consider the update law

=Y o= —gew g>0 (0.3.21)
and let the Lyapunov function

v o= y? (0.3.22)

This Lyapunov function has the special form of the norm square of the
identifier parameter error. Its derivative along the trajectories of the
adaptive system is

Vo= —gyiw? (0.3.23)
Therefore, the update law causes a decreasing parameter error and all

signals remain bounded.

The question of parameter convergence can be answered quite sim-
ply in this case. Note that (0.3.20), (0.3.21) represent the first order
linear time varying system

v = —gwly (0.3.24)
which may be explicitly integrated to get

t
V(1) = W(0) exp (- g [wir)dr) (0.3.25)
0

It is now easy to see that if

t
j wir)dr — oo as { - oo (0.3.26)
0

then ¥(1)—>0, so that =(¢)— =" and 6(t)— 1/k,, yielding the desired
controller. The condition (0.3.26) is referred to as an identifiability con-
dition and is much related to the so-called persistency of excitation that
will be discussed in Chapter 2. It is easily seen that, in particular, it

excludes signals which tend to zero as ¢ — co.
The difficulty with (0.3.26) is that it depends on w, which in turn
depends on u and therefore on both 8 and r. Converting it into a condi-

tion on the exogenous reference input r(z) only is another of the prob-
lems which we will discuss in the following chapters.
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The foregoing simple example showed that even when simple feed-
forward control of a linear, time invariant, first order plant was
involved, the analysis of the resulting closed-loop dynamics could be
involved: the equations were time-varying, linear equations. Once feed-
back control is involved, the equations become nonlinear and time vary-
ing.

CHAPTER 1
PRELIMINARIES

This chapter introduces the notation used in this book, as well as some
basic definitions and results. The material is provided mostly for refer-
ence. It may be skipped in a first reading, or by the reader familiar with
the results.

The notation used in the adaptive systems literature varies widely.
We elected to use a notation close to that of Narendra & Valavani
[1978], and Narendra, Lin, & Valavani [1980], since many connections
exist between this work and their results. We will refer to texts such as
Desoer & Vidyasagar [1975], and Vidyasagar [1978] for standard results,
and this chapter will concentrate on the definitions used most often, and
on nonstandard results.

1.1 NOTATION

Lower case letters are used to denote scalars or vectors. Upper case
letters are used to denote matrices, operators, or sets. When u(¢) is a

function of time, i(s) denotes its Laplace transform. Without ambi-

guity, we will drop the arguments, and simply write ¥ and #. Rational
transfer functions of linear time invariant (LTI) systems will be denoted

using upper case letters, for example, H (s) or H. Polynomials in s will
be denoted using lower case letters, for example, 7i(s) or simply 7.
Thus, we may have H =1i/d, where H is both the ratios of polynomials

in 5 and an operator in the Laplace transform domain. Sometimes, the
time domain and the Laplace transform domain will be mixed, and

17
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parentheses will determine the sense to be made of an expression. For
example, ﬁ(u) or H i is the output of the LTI system H with input u.
ﬁ(u)v is f}(u) multiplied by v in the time domain, while ﬁ(uv) is H
operating on the product u(¢)v(¢).

1.2 L, SPACES, NORMS

We denote by | x| the absolute value of x if x is a scalar and the
euclidean norm of x if x is a vector. The notation || || will be used to
denote the induced norm of an operator, in particular the induced
matrix norm

4l = lgltlgllel (1.2.1)

and for functions of time, the notation is used for the L, norm

e o}
lully = ([ | u@)]?dr) (1.2.2)
0

for pe[1,00), while
lhulle = sup | u()| (1.2.3)

and we say that wel, when || ul, exists. When p is omitted, || ul|
denotes the L, norm. Truncated functions are defined as

Sy = f@) t<s
= 0 t>s (1.2.4)

if

and the extended L, spaces are defined by
Ly = {f] foralls <oo, f, e L,) (1.2.5)

For example, ¢’ does not belong to L, but e e L. When
u e Looe, we have

lully = S,LQ?I u(r) | (1.2.6)

A function f may belong to L, and not be bounded. Conversely, a
bounded function need not belong to L,;. However, if feL, NnL_,

then fe L, for all pe[l, o] (cf. Desoer & Vidyasagar [1975], p. 17).

Also, f € L, does not imply that f—0 as ¢t - oo. This is not
even guaranteed if f is bounded. However, note the following results.
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Lemma 1.2.1 Barbalat’s Lemma
t

If S(t) is a uniformly continuous function, such that lim ff(T)dT
1 --00 0

exists and is finite,

Then f(t1)—>0ast— co.
Proof of Lemma 1.2.1 cf. Popov [1973] p. 211.

Corollary 1.2.2 .
If g,geLm,andgeLp,forsomep € [1,00),

Lowtn, cart
Proof of Corollary 1.2.2 Vd

Direct from lemma 1.2.1, with f = | g| *, since g,¢ bounded implies
that f is uniformly continuous. [

Then g(t)—0ast— oo.

1.3 POSITIVE DEFINITE MATRICES

Positive definite matrices are frequently found in work on adaptive sys-
tems. We summarize here several facts that will be useful. We consider
real matrices. Recall that a scalar u, or a function of time u(¢), is said
to be positive if u 2 0, or u(¢) = 0 for all ¢. It is strictly positive if u >0,
or, for some a>0, u(t) = « for all t. A square matrix 4 € R"*" is DOsi-
tive semidefinite if xT A x = 0 for all x. It is positive definite if, for some
a>0, xTAx 2 axTx = «| x|? for all x. Equivalently, we can require
xTAx 2 a for all x such that | x| = 1. The matrix 4 is negative
semidefinite if ~4 is positive semidefinite and for symmetric matrices,
we write 4 2 B if 4 - B =2 0. Note that a matrix can be neither posi-
tive semidefinite nor negative semidefinite, so that this only establishes a
partial order on symmetric matrices.

The eigenvalues of a positive semidefinite matrix lie in the closed
right-half plane (RHP), while those of a positive definite matrix lie in the
open RHP. If 4 20 and 4 = A7, then A4 is symmetric positive
semidefinite. In particular, if 4 > 0, then 4 +A47 is symmetric positive
semidefinite. The eigenvalues of a symmetric matrix are all real. Such a

matrix also has n orthogonal eigenvectors, so that we can decompose A
as

A4=UTAU (1.3.1)

where U is the matrix of eigenvectors satisfying UT U = I (that is, U is
a unitary matrix), and A is a diagonal matrix composed of the
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eigenvalues of A. When 4 = 0, the square root matrix A" is a diagonal
matrix composed of the square roots of the eigenvalues of 4, and

A" = UTA"U (1.3.2)

is the square root matrix of 4, with 4 = 4" 4" and (4")T = 4",

If 4 20and B 20, then 4 +B =0 but it is not true in general
that 4 - B = 0. However, if A, B are symmetric, positive semidefinite
matrices, then AB—although not necessarily symmetric, or positive
semidefinite—has all eigenvalues real positive.

Another property of symmetric, positive semidefinite matrices, fol-
lowing from (1.3.1), is

Amin) ]| x]2 € xTAx < Apax(4) ] x| 2 (1.3.3)

This simply follows from the fact that xT A x = xT UTAUx = zTAz
and | z|? =27z = | x|2 We also have that

H A “ = Amax(4) (1.3.4)
and, when A4 is positive definite
BATH = 1/Amin(4) (1.3.5)

14  STABILITY OF DYNAMIC SYSTEMS

1.4.1 Differential Equations
This section is concerned with differential equations of the form

X = f([,X) X(lo) = Xg (141)

where x € R",t = 0.

The system defined by (1.4.1) is said to be autonomous, or time-
invariant, if f does not depend on ¢, and non autonomous, or time-
varying, otherwise. It is said to be linear if f(t,x) = A(¢)x for some
A(): R, —-R"*" and nonlinear otherwise.

We will always assume that f(¢,x) is piecewise continuous with
respect to ¢. By this, we mean that there are only a finite number of
discontinuity points in any coripact set.

We define by By the closed ball of radius 4 centered at 0 in IR”,
Properties will be said to be true:

e Jocally, if true for all x; in some ball B,,.
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o globally, if true for all x, € R".

® inany closed ball, if true for all xo € By, with / arbitrary.
® uniformly, if true for all ¢4 > 0.

By default, properties will be true locally.

Lipschitz Condition and Consequences

The function f is said to be Lipschitz in x if, for some 4 >0, there
exists / = 0 such that

[ S, x0) = f(t,x2)] < I]x)-xy (1.4.2)
for all x|, x, € B,, t 2 0. The constant / is called the Lipschitz con-
stant. This defines locally Lipschitz functions. Globally Lipschitz func-
tions satisfy (1.4.2) for all x,, X, € IR", while functions that are
Lipschitz in any closed ball satisfy (1.4.2) for all X1, X3 € By, with /
possibly depending on 4. The Lipschitz property is by default assumed
to be satisfied uniformly, that is, / does not depend on .

If f is Lipschitz in x, then it is continuous in x. On the other hand,

if f has continuous and bounded partial derivatives in X, then it is
Lipschitz. More formally, we denote

an

a .
D,f := [—f'-] (1.4.3)
so that if || D, f|| </, then f is Lipschitz with constant /.
From the theory of ordinary differential equations (cf. Coddington
& Levinson [1955]), it is known that f locally bounded, and S locally

Lipschitz in x imply the existence and uniqueness of the solutions of
(1.4.1) on some time interval (for as long as x € By).

Definition Equilibrium Point
x is called an equilibrium point of (1.4.1), if f(¢,x) =0 forall¢ 0.

By translating the origin to an equilibrium point xo, we can make
the origin 0 an equilibrium point. This is of great notational help, and
we will assume henceforth that 0 is an equilibrium point of (1.4.1).

Proposition 1.4.1

If x = 0 is an equilibrium point of (1.4.1), f is Lipschitz in x with
constant / and is piecewise continuous with respect to ¢

Then  the solution x(¢) of ( 1.4.1) satisfies
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Ixol €Y7 2 |x()] = |xo| e !¢ 1 (1.4.4)
as long as x(¢) remains in B,,.

Proof of Proposition 1.4.1
Note that | x| 2 = xT x implies that

42 2 a
|G| = 2t | 1|
- rd 4
- 2|x < xl < 2ix]|dl x| (1.4.5)
so that
d E
Idt|x;| s | & x| (1.4.6)
Since f is Lipschitz
d
- —_ < 1.4.7
lxl < ZIxl < dlx) (1.47)
and there exists a positive function s(¢) such that
Lix| = ~11xf +5 | (1.4.8)

Solving (1.4.8)

| x(2)|

4
|xol e7/¢ 10 +] e~ -Is(z)dr

|xole” !¢ 4 (1.4.9)

The other inequality follows similarly from (1.[7). a

Proposition 1.4.1 implies that solutions starting inside B, will
remain inside B for at least a finite time interval. Or, conversely, given
a time interval, the solutions will remain in B, provided that the initial
conditions are sufficiently small. Also, f* globally Lipschitz implies that
xeL,,. Proposition 1.4.1 also says that x cannot tend to zero faster
than exponentially.

The following lemma is an important result generalizing the well-
known Bellman-Gronwall lemma (Bellman [1943]). The proof is similar
to the proof of proposition 1.4.1, and is left to the appendix.

v
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Lemma 1.4.2 Bellman-Gronwall Lemma
Let x(.),a(), u(): R,>R,. Let T = 0.

If
{
x(t) < !a(f)x(f)df + u(t) (1.4.10)
forallt € [0,T]
Then
{ j'a(a)da
x(t) Sfa(-r)u(-r)e' dr + u(t) (1.4.11)
. 0

forallt € [0,T]
When u(.) is differentiable

(”;a(a) do { ja(a) do

x(t) <u(0)e + fit('r)e’ dr (1.4.12)
0

forallt e [0, T]
Proof of Lemma 1.4.2 in Appendix.

1.4.2 Stability Definitions

Informally, x = 0 is a stable equilibrium point, if the trajectory x(t)
remains close to 0 if the initial condition x; is close to 0. More pre-
cisely, we say

Definition Stability in the Sense of Lyapunov
x = 0 is called a stable equilibrium point of (1.4.1), if, for all 7o = 0 and
€> 0, there exists & (g, ¢) such that

| xo| < é(tg,e) => |x(2)| < forall t 2 ¢

where x(¢) is the solution of (1.4.1) starting from x at ¢,

Definition Uniform Stability
x = 0 is called a uniformly stable equilibrium point of (1.4.1) if, in the
preceding definition, 4 can be chosen independent of ¢,.

Intuitively, this definition captures the notion that the equilibrium

point is not getting progressively less stable with time. Stability is a very
mild requirement for an equilibrium point. In particular, it does not
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require that trajectories starting close to the origin tend to the origin
asymptotically. That property is made precise in the following
definition.

Definition Asymptotic Stability
x = 0 is called an asymptotically stable equilibrium point of (1.4.1), if

(a) x = 0 is a stable equilibrium point of (1.4.1),
(b) x = 0 is attractive, that is, for all ¢y = 0, there exists §(¢g), such
that

[xo] <6 => lim |x(¢)] =0
=00

Definition Uniform Asymptotic Stability (u.a.s.)

x =0 is called a wuniformly asymptotically stable (u.a.s.) equilibrium

point of (1.4.1), if

(a) x = 0 is a uniformly stable equilibrium point of (1.4.1),

(b) the trajectory x(¢) converges to 0 uniformly in ¢q. More pre-
cisely, there exists §>0 and a function «(r,xg):

R, x R"—>IR,, such that lim v(r,xq) = 0 for all x; and
T—> 00

[xol <6 = |x(t)] < v(@ -1y, xg) for all ¢ 2/607/0

The previous definitions are /ocal, since they concern neighbor-
hoods of the equilibrium point. Global asymptotic stability is defined as
follows.

Definition Global Asymptotic Stability
x =0 is called a globally asymptotically stable equilibrium point of
(1.4.1), if it is asymptotically stable and lim|x(¢)| =0, for all
t—>
X0 € IR". ®
Global u.a.s. is defined likewise. Note that the speed of conver-
gence is not quantified in the definitions of asymptotic stability. In the

following definition, the convergence to zero is required to be at least
exponential.

Definition Exponential Stability, Rate of Convergence

x =0 is called an exponentially stable equilibrium point of (1.4.1) if
there exist m, a >0 such that the solution x(¢) satisfies

[x()] < me "9 x,] (1.4.13)
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for all xo € By, t 2192 0. The constant « is called the rate of conver-
gence.

Global exponential stability means that (1.4.13) is satisfied for any
xp € IR". Exponential stability in any closed ball is similar except that
m and « may be functions of 4. Exponential stability is assumed to be
uniform with respect to #;,. It will be shown that uniform asymptotic
stability is equivalent to exponentlal stability for linear systems (see Sec-
tion 1.5.2), but it is not true in general.

1.4.3 Lyapunov Stability Theory

We now review some of the key concepts and results of Lyapunov stabil-
ity theory for ordinary differential equations of the form (1.4.1). A more
complete development is available, for instance, in the texts by Hahn
[1967] and Vidyasagar [1978].

The so-called Lyapunov second method enables one to determine
the nature of stability of an equilibrium point of (1.4.1) without expli-
citly integrating the differential equation. The method is basically a gen-
eralization of the idea that if some “measure of the energy” associated
with a system is decreasing, then the system will tend to its equilibrium.
To make this notion precise, we need to define exactly what we mean by
a “measure of energy,” that is, energy functions. For this, we first define
class K functions (Hahn [1967], p. 7).

Definition Class K Functions

A function a(¢) : R, — IR, belongs to class K (denoted a(.) e K), if it
is continuous, strictly increasing, and « (0) =

Definition Locally Positive Definite Functions

A continuous function v(¢,x): R, x R” - IR, is called a locally posi-
tive definite function (l.p.d.f) if, for some & >0, and some a(.) € K

v(£,0)=0 and v(t,x) 2 a(x]) forallx € By,t =20

An lLp.d.f. is locally like an “energy function.” Functions which are
globally like *“‘energy functions™ are called positive definite functions
(p.d.f.) and are defined as follows.

Definition -Positive Definite Functions

A continuous function v(f,x): IR, x R" - IR, is called a positive
definite function (p.d.f) , if for some a(.) € K

v(,00 =0 and v(t,x) 2 a(|x|) forallx e R",¢t >0
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and the function ¢ (p)—> 00 as p—oco .

In the definitions of Lp.d.f. and p.d.f. functions, the energy like
functions are not bounded from above as ¢ varies. This follows in the
next definition.

Definition  Decrescent Function
The function v(z,x) is called decrescent, if there exists a function
B8(.) € K, such that

v(t,x) < B(| x||) forall x € By,t =20

Examples

Following are several examples of functions, and their membership in
the various classes:

v(t,x) = | x|?: p.d.f., decrescent

v(t,x) = xT P x, with P >0 : p.d.f., decrescent
v(t,x) = (¢t + 1)|x]?:p.df.

v(t,x) = e | x|?: decrescent

v(t,x) = sin?(| x| ) : Lp.d.f., decrescent

Lyapunov Stability Theorems _

Generally speaking, the theorems state that when v(¢,x) is a p.d.f,, or an
Lp.d.f, and dv/dt(t,x) <0, then we can conclude the stability of the
equilibrium point. The derivative of v is taken along the trajectories of
(1.4.1); that is,

v, x) _v(,x) L v(t,x) e
dt (1.4.1) at * ax J(t,x) (1.4.14)

Theorem 1.4.3 Basic Theorems of Lyapunov
Let v(¢,x) be continuously differentiable:
Then
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Conditions on Conditions on Conclusi
¥(t, X) —¥t,x) onclusions
Lp.d.f. = 0 locally stable
Lp.d.f., decrescent | = 0 locally uniformly stable
Lp.d.f. Lp.d.f. asymptotically stable
Lp.d.f,, decrescent | Lp.d.f. uniformly asymptotically stable
p.d.f., decrescent p.d.f. globally u.a.s

Proof of Theorem 1.4.3 cf, Vidyasagar [1978], p. 148 and after.

Example

We refer to Vidyasagar [1978] for examples of application of the
theorems. An interesting example is the second order system

X1 = x;(xt+x3-1-x,
X2 = X1+ x(x} +x2 1) (1.4.15)
with the p.d.f.
vix,xy) = x} + x3 (1.4.16)

The derivative of v is given by

vx,xy) = 2(x} +x3)(xf +x3-1) (1.4.17)

so that —v is an Lp.d.f. (in B,, where & <1), establishing the local
asymptotic stability of the origin. The origin is, in fact, not globally
asymptotically stable: the system can be shown to have a circular limit
cycle of radius 1 (by changing to polar coordinates).

From (1.4.17), we can also show that for all x € B,
v < =2(1-hY)y (1.4.18)
so that

v(t) < v(0)e 20 -
|x(@)]

and, in fact, x = 0 is a locally exponentially stable equilibrium point.
Note that the Lyapunov function is in fact the squared norm of the
state, a situation that will often occur in the sequel.

A

|x0)] e~ At forallt =0  (1.4.19)
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Comments

The theorems of Lyapunov give sufficient conditions guaranteeing the
stability of the system (1.4.1). It is a remarkable fact that the converse of
theorem 1.4.3 is also true: for example, if an equilibrium point is stable,
there exists an Lp.d.f. v(f,x) with v(¢,x) < 0. The usefulness of
theorem 1.4.3 and its converse is limited by the fact that there is no gen-
eral (and computationally non-intensive) prescription for generating the
Lyapunov functions. A significant exception to this concerns exponen-
tially stable systems, which are the topic of the following section.

1.5 EXPONENTIAL STABILITY THEOREMS

We will pay special attention to exponential stability for two reasons.
When considering the convergence of adaptive algorithms, exponential
stability means convergence, and the rate of convergence is a useful
measure of how fast estimates converge to their nominal values. In
Chapter 5, we will also observe that exponentially stable systems possess
at least some tolerance to perturbations, and are therefore desirable in
engineering applications.

1.5.1 Exponential Stability of Nonlinear Systems

The following theorem will be useful in proving several results and
relates exponential stability to the existence of a specific Lyapunov func-
tion.

Theorem 1.5.1 Converse Theorem of Lyapunov

Assume that f(¢,x) : R, x IR” - IR" has continuous and bounded first
partial derivatives in x and is piecewise continuous in ¢ for all
x € By, t 20. Then, the following statements are equivalent:

(a) x = 0 is an exponentially stable equilibrium point of
X = f(t,X) x(tg) = Xo (1.5.1)
(b) There exists a function v (¢, x), and some strictly positive con-
stants ', a; a; a3 a4, such that, for all x € B, t=0
ap|x]? < v(t,x) < ay]x|? (1.5.2)
Av(t,x) | < —ag x |2 (1.5.3)
dt (1.5.1)
| CIAGRED ) R (1.5.4)

ox
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Comments
Again, the derivative in (1.5.3) is a derivative taken along the trajec-
tories of (1.5.1), that is

dv(t,x) i v (t,x) + av(t,x) 1, x) (1.5.5)
dt .51 ot dx
This means that we consider x to be a function of ¢ to calculate the
derivative along the trajectories of (1.5.1) passing through x at ¢. It does
not require of x to be the solution x(¢) of (1.5.1) starting at x(¢g).
Theorem 1.5.1 can be found in Krasovskii [1963] p. 60, and Hahn
[1967] p. 273. 1t is known as one of the converse theorems. The proof
of the theorem is constructive: it provides an explicit Lyapunov func-
tion v(¢,x). This is a rather unusual circumstance, and makes the
theorem particularly valuable. In the proof, we derive explicit values of
the constants involved in (1.5.2)-(1.5.4).

Proof of Theorem 1.5.1

(a) implies (b).

(i) Denote by p(r, x, t) the solution at time 7 of (1.5.1) starting at x(¢),
t, and define

t+T
v, x) = [|p@,x,0|%dr (1.5.6)
t

where T >0 will be defined in (ii). From the exponential stability and
the Lipschitz condition
mlx| e *C=1 > |p(r,x,t) = |x|e !0 (1.5.7)
and inequality (1.5.2) follows with
a) = (1-e"2'Ty/21 ay 1= m*(1-e22T)/2a  (1.5.8)

(i1) Differentiating (1.5.6) with respect to ¢, we obtain

% = |p@+T,x,00% - | plt,x,0|
t+Td
i + [ g Upex.0hdr (1.5.9)

Note that d/dt is a derivative with respect to the initial time ¢ and is
taken along the trajectories of (1.5.1) By definition of the solution p,

plr,x(t+At),t+A1) = p(r,x(),t) (1.5.10)
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for all A¢, so that the term in the integral is identically zero over
[£,¢ + T]. The second term in the right-hand side of (1.5.9) is simply

| x|, while the first is related to | x| 2 by the assumption of exponential
stability. It follows that

d”—(;tr—‘—) < —(1-m2e Ty 5|2 (1.5.11)
Inequality (1.5.3) follows, provided that T >(l/a)lnm and
a3 = | -m2e 2T (1.5.12)
"?(iii) Differentiating (1.5.6) with respect to x;, we have
t+T n
v (t,x) ap(r,x,t)
—_—t = 2 i(r,x,ty————— d 1.5.13
o J 2 X D= dr (1503)

Under the assumptions, the partial derivative of the solution with
respect to the initial conditions satisfies

d |9, x,0f 4 |d
7[—(5—— " G @ MUY

537 [fitr.p,x,0)

. éﬂl| LX) s
k=19 b b e ox;
(except possibly at points of discontinuity of f(r,x)). Denote
Qij(r,x,t) := Opi(r,x,t) /dx;
Aiji(x,t) = afit,x)/ox; (1.5.15)
so that (1.5.14) becomes
;jd; Q(r,x,t) = A(p(r,x,1),7) Q(r,x,1) (1.5.16)

Equation (1.5.16) defines Q(r,x,t), when integrated from r=1¢ to
7=1t+T, with initial conditions Q(¢,x,t)=1. Thus, Q(r,x,t) is the
state transition matrix (cf. Section 1.5.2) associated with the time vary-
ing matrix 4 (p(r,x,t),7). By assumption, 4, )] <k for some k,
so that

| QGr,x,t)|| < ektr-0 (1.5.17)
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and, using the exponential stability again, (1.5.14) becomes
t+7T

v, x) | k - a)(r-1)
l__ax < 2[ m|x| e dr (1.5.18)
which is (1.5.4) if we define
ag = 2m(e®=T _1) /(k - @) (1.5.19)

Note that the function v(z,x) is only defined for x € B) with
h’=h/m, if we wish to guarantee that p(r,x,t) € B, forall r>¢.
(b) implies (a)
This direction is straightforward, using only (1.5.2)-(1.5.3), and we find

. 1
a7 1 a3
ay 2 o)

(1.5.20)
0

Comments

The Lyapunov function v (¢, x) can be interpreted as an average of the
squared norm of the state along the solutions of (1.5.1). This approach
is actually the basis of exact proofs of exponential convergence presented
in Sections 2.5 and 2.6 for identification algorithms. On the other hand,
the approximate proofs presented in Chapter 4 rely on methods for
averaging the differential system itself. Then the norm squared of the
state itself becomes a Lyapunov function, from which the exponential
convergence can be deduced.

Theorem 1.5.1 is mostly useful to establish the existence of the
Lyapunov function corresponding to exponentially stable systems. To
establish exponential stability from a Lyapunov function, the following
theorem will be more appropriate. Again, the derivative is to be taken
along the trajectories of (1.5.1).

Theorem 1.5.2 Exponential Stability Theorem

If there exists a function v (¢, x), and strictly positive constants a,
ay, a3, and 9§, such that for all x € B,,r =0

. aj| x| < v(t,x) S ay|x|? (1.5.21)

% v(t,x(t)) <0 (1.5.22)

* (LS
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L +8

[ Ly, xm

t (L.5.1)

dr < —a3|x(1)|? (1.5.23)

Then  x(t) converges exponentially to O.
Proof of Theorem 1.5.2
From (1.5.23)

v, x(£)-v({E+8,x(t+08) 2 (az/ay) v{t,x(t)) (1.5.24)
for all ¢ = 0, so that

v(E+6,x(t+8) < (I —az/ay) v(t,x(t)) (1.5.25)

forallt 2 0. From (1.5.22)

v(tL,x() < v(t,x(@)) forall¢; e [t,t+6] (1.5.26)

Choose for ¢ the sequence fg, to+38, tg+25,... so that v(¢,x(¢)) is
bounded by a staircase v(fp,x(fg)), V(¢o+0,x(fo+96)),... where the
steps are related in geometric progression through (1.5.24). It follows
that

y(t,x@) < mye Ty (10, x(t0) (1.5.27)
for all 1 = 15 = 0, where
m, = m ay = —é—xn [m] (1.5.28)
Similarly,
[x(t)] < me *“7) x(10)] (1.5.29)
where

N —

) 1 _ 1 1
e e T ] 050

(]

1.5.2 Exponential Stability of Linear Time-Varying Systems
We now restrict our attention to linear time-varying (LTV) systems of
the form

x = A(t)x x(t) = Xg (1.5.31)

where A(¢) e R"™" is a piecewise continuous function belonging to
L

e’
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Definition State-Transition Matrix

The state-transition matrix ®(t,19) € R**" associated with A(¢) is, by
definition, the unique solution of the matrix differential equation

E(‘I’(l,to)) = A(t)®(t,1) ®(to,t0) = 1 (1.5.32)

Note that linear systems with A(.) € LOo automatlcally satisfy the
Lipschitz condition over any finite interval, so that the solutions of
(1.5.31) and (1.5.32) are unique on any time interval. It is easy to verify
that the solution of (1.5.31) is related to that of (1.5.32) through

x(t) = ®(t,t9)x(2p) (1.5.33)

In particular, this expression shows that trajectories are “proportional”
to the size of the initial conditions, so that local and global properties of
LTV systems are identical.

The state-transition matrix satisfies the so-called semigroup property
(cf. Kailath [1980], p. 599):

Q(t,t0) = ®(t,7)P(r,tp)
and its inverse is given by
®(t,00)"" = ®(ty,2) (1.5.35)
A consequence is that

forallt =27 >1¢g (1.5.34)

‘I’(l to)

a -1

~®(to,1) " A(1o) (L0, 1) ® (L0, )"
- ®(t,10)A(tg) (1.5.36)

The following propositions relate the stability properties of (1.5.31)
to properties of the state-transition matrix.

Proposition 1.5.3 Uniform Asymptotic Stability of LTV Systems
x =0 is a uniformly asymptotically stable equilibrium point of (1.5.3 D
if and only if x = 0 is stable, which is guaranteed by
- sup ( sup &G, t)]) < co (1.5.37)
1) 20

and x = 0 is attractive, which is guaranteed by

| ®(t,20)|| - 0 as t—> o0 uniformly in ¢t (1.5.38)
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Proof of Proposition 1.5.3 direct from the expression of the solution
(1.5.33).

Proposition 1.5.4 Exponential Stability of LTV Systems
x = 0 is an exponentially stable equilibrium point of (1.5.31)
if and only if for some m, a > 0

| @, to)|| = me eC7 (1.5.39)

forallt 2 ¢5=0.

Proof of Proposition 1.5.4 direct from the expression of the solution
(1.5.33).

A unique property of linear systems is the equivalence between uni-
form asymptotic stability and exponential stability, as stated in the fol-
lowing theorem.

Proposition 1.5.5 Exponential and Uniform Asymptotic Stability
x = 0 is a uniformly asymptotically stable equilibrium point of (1.5.31)

if and only if x =0 is an exponentially stable equilibrium point of
(1.5.31).

Proof of Propesition 1.5.5

That exponential stability implies uniform asymptotic stability is obvi-
ous from their definitions and in particular from proposition 1.5.3 and
proposition 1.5.4. We now show the converse. Proposition 1.5.3
implies that there exists M >0 and T >0, such that

| &, 1)l < M forallt = 1520 (1.5.40)

and
| @G+ Tt0)| < —é— for all £ = 0 (1.5.41)
For all ¢=ty, there exists an integer »n such that

t € [to+nT,to+(n+1)T]. Using the semigroup property recursively,
together with (1.5.40), (1.5.41)

| 2@ 1)l < || 2@, 20+ nT)| || 2(to+nT, o)l

K 1 (t ~te)/T
< M 5 =M 5 (1.5.42)

which can easily be expressed in the form of (1.5.39). 0O
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Uniform Complete Observability—Definition and Results
Through the definition of uniform complete observability, some addi-
tional results on the stability of linear time-varying systems will now be

established. We consider the linear time-varying system [C(¢),4(¢)]
defined by

1]

x(t) = A@)x@)
y(t) C(t)x(2) (1.5.43)

where x(¢) € R”, y(¢) € R™, while A(t) ¢ R"*" C(t) ¢ R™*" are
piecewise continuous functions (therefore belonging to L.

Definition Uniform Complete Observability (UCO)

The system [C(2),A4 ()] is called uniformly completely observable (UCO)
if there exist strictly positive constants 8,,8,,6, such that, for all 75 = 0

B2l = N(tg,tg+06) = 8,1 (1.5.44)

where N (2, 2o+ 6) € R"*" is the so-called observability grammian
o+

N(tg,tp+6) = f ®T(r,t)) CT(r) C(r) @ (, o) dr (1.5.45)
1)

Comments
Note that, using (1.5.33), condition (1.5.44) can be rewritten as

log+d

Balx(t)|* = [ |C)x(r)|2dr 2 By]x(to))? (1.5.46)
lo

for all x(z9) € IR", ¢y = 0, where x(¢) is the solution of (1.5.43) starting
at x(tp).

The observability is called uniform because (1.5.43) is satisfied uni-
formly for all £y and complete because (1.5.46) is satisfied for all x(¢).
A specific x(tg) is observable on a specific time interval [, tq + 6] if con-
dition (1.5.46) is satisfied on that interval. Then, x(¢;) can be recon-
structed from the knowledge of y(.) using the expression

to+6
xX(t)) = Ntoto+8)™" [ @T(r,t0)CT(Dy(rydr  (1.5.47)

to
On the other hand, if condition (1.5.44) fails to be satisfied, (1.5.46)
shows that there exists an x(¢o) # O such that the corresponding output
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satisfies

to+d

[ 1y@)2dr = 0 (1.5.48)
o

so that x(¢) is not distinguishable from 0.

Theorem 1.5.6 Exponential Stability of LTV Systems

The following statements are equivalent:

(a) x = 0 is an exponentially stable equilibrium point of (1.5.31).

(b) For all C(¢) e R™*" (with m arbitrary) such that the pair
[C(t),A(1)] is UCO, there exists a symmetric P(¢t) € IR"*",
and some vy, v, >0, such that

voI 2 P(t) = ~1 (1.5.49)
~P@t) = AT()P(t) + P()A(t) + CT(t)C(t)  (1.5.50)
for all ¢ 20.
(c) For some C(¢t) ¢ IR™*" (with m arbitrary) such that the pair

[C(1),A ()] is UCO, there exists a symmetric P(¢) ¢ IR"*" and
some v, v2> 0, such ti:at (1.5.49) and (1.5.50) are satisfied.

Proof of Theorem 1,5.6
(a) implies (b)
Define

P@) = [@7(r,0)CT(C(N) B (r,1)dr (1.5.51)
!

We will show that (1.5.49) is satisfied so that P(¢) is well defined, but
first note that by differentiating (1.5.51), and using (1.5.36), it follows
that P(¢) satisfies the linear differential equation (1.5.50). This equation
is a linear differential equation, so that the solution is unique for given
initial conditions, However, we did not impose initial conditions in
(1.5.50), and P(0) is in fact given by (1.5.51).

By the UCO assumption

t+d

B = j eT(r,)CT()C(r) & (r,t)dr = B1 (1.5.52)
H

for all ¢ = 0. Since the integral from ¢ to oo is not less than from ¢ to
t +6, the lower inequality in (1.5.50) follows directly from (1.5.52), To
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show the upper inequality, we divide the interval of integration in inter-
vals of size 6 and sum the individual integrals. On the interval
[t +8,t+26)

t+28

[ @7, 0CT@CD@(r,0)dr = Tt +56,1)

t+3 . é
1+28
[ T, t+8)CT(D)C() (v, +8)dr | flt+6,1)
(48

< Bymie 2t (1.5.53)

where we used the UCO and exponential stability assumptions. There-
fore

f@T(T,I)CT(T)C('r)(P(r,t)d‘r
t

S Br(l+m?e 22 4 mle et )T = 4] (1.5.54)
(b) implies (c) trivial.
(c) implies (a).
Consider the Lyapunov function

vit,x) = xT@)P(@t)x(t) (1.5.55)

so that

i
<.
|

= = xTO)P@O)A@)x(t) - xT@)AT(t)P(t)x(t)
—xT( E
xT@W)P()x@t) )

xT()CT(t) C(z)x(z)/o (1.5.56)
Using the UCO property

t+6 t+3

]v’dr = -xT) fQT(T,t)CT(T)C(T)Q(T,t)d‘r x(t)
! t

< -8y x(0)?2 (1.5.57)

Exponential convergence follows from theorem 1.5.2.
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It is interesting to note that the Lyapunov function is identical to
the function used in theorem 1.5.1, when C = I, and the upper bound of
integration tends to infinity. 0O

1.5.3 Exponential Stability of Linear Time Invariant Systems

When the system (1.5.31) is time-invariant, even further simplification
of the stability criterion results. Specifically, we consider the system

X = Ax x{tg) = Xo (1.5.58)
Note that since the system is linear, local and global stability pro-

perties are identical, and since it is time-invariant, all properties are uni-
form (in tg).

Theorem 1.5.7 Lyapunov Lemma

The following statements are equivalent:

(a) All eigenvalues of A lie in the open left-half plane

(b) x = 0 is an exponentially stable equilibrium point of (1.5.58)

(c) For all C e R™*" (with m arbitrary), such that the pair [C, 4]
is observable, there exists a symmetric positive definite
P e IR"*" satisfying

ATP + P4 = -CTC (1.5.59)

(d) For some C e R™*" (with m arbitrary), such that the pair
[C,A] is observable, there exists a symmetric positive definite
P e RR"*”" satisfying (1.5.59).

Proof of Theorem 1.5.7
(a) implies (b).

This follows from the fact that the transition matrix is given by the
exponential matrix (cf. Vidyasagar [1978), pp. 171)

B(t,19) = W (1.5.60)

(b) implies (c).
Let

t

S(t) := {eAT’CTCeA'dr
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{
= [et’t-aCTCett -y G (1.5.61)
0

Clearly S(t)=S7(¢), and since [C, A] is observable, S(1)>0 for all
t >0. Using both expressions in (1.5.61)

St) = e''CTCeM = ATS@W)+S@W)4+CTcC (1.5.62)

and using the exponential stability of A

lim $¢) = 0 = ATP + P4 + CTC (1.5.63)
{ =00
where
P = lim SQ) (1.5.64)
{ =+ 00

(c) implies (d) trivial.
(d) implies (b) as in theorem 1.5.6. 0O

Remark

The original version of the Lyapunov lemma is stated with Q positive

definite replacing C7 C (which is only semi-definite), and leading to the
so-called Lyapunov equation:

ATP + P4 = -Q (1.5.65)

Then, the observability hypothesis is trivial. We stated a more general
version of the Lyapunov lemma partly to show the intimate connection
between exponential stability and observability for linear systems.

1.6 GENERALIZED HARMONIC ANALYSIS

An appropriate tool for the study of stable linear time-invariant systems
is Fourier transforms or harmonic analysis, since e/ is an eigenfunction
of such systems. We will be concerned with the analysis of algorithms
for identification and adaptive control of linear time-invariant systems.
The overall adaptive systems are time-varying systems, but, under cer-
tain conditions, they become “asymptotically” time-invariant. For these
systems, generalized harmonic analysis is a useful tool of analysis. The
theory has been known since the early part of the century and was
developed in Wiener's Generalized Harmonic Analysis (Wiener [1930]).
Boyd & Sastry [1983] and [1986] illustrated its application to adaptive
systems. Since the proofs of the yarious lemmas used in this book are
neither difficult nor long, we provide them in this section.
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Definition Stationarity, Autocovariance
A signal u: IR, - IR" is said to be stationary if the following limit
exists, uniformly in ¢
1 o+ T

R() = lim = [ u@ul¢+r)dr e R™*" (1.6.1)
- Q0 T t
0
in which instance, the limit R,(¢) is called the autocovariance of u.

The concept of autocovariance is well known in the theory of sto-
chastic systems. There is a strong analogy between (1.6.1) and
R§h(¢) = E [u(r)u”(t + )], when u is a wide sense stationary stochas-
tic process. Indeed, for a wide sense stationary ergodic process u(¢,w) (w
here denotes a sample point of the underlying probability space), the

autocovariance R,(t,w) exists, and is equal to R#(¢) for almost all w.
But we emphasize that the autocovariance defmed in (1.6.1) is com-
pletely deterministic,

Proposition 1.6.1
R, is a positive semi-definite matrix-valued function, that is, for all ¢,, . .
, I e Ryandey, ..., ¢ € R”

k

2 R (ti-t)e =2 0 (1.6.2)
i,j=1

Proof of Proposition 1.6.1
Define the scalar valued function v (t) by

v{t) : EC, u(t +1) (1.6.3)
i=1
Then, forall T>0
1 T
2
0 < ?£|v(f)| dr (1.6.4)
T
- .2 £u(f+z,)uT(f+z,)dr)c,
k 1 L+ T
= 3 d(5 [ woyuT(o+1; - 1;)do) (1.6.5)
ij=1 !
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Since u has an autocovariance, the limit of (1.6.5) as T — oo is

k
> R -1)c (1.6.6)
ij=1
From (1.6.4), we find that (1.6.6) is positive, so that (1.6.2) follows. 0O
From proposition 1.6.1, it follows (see, for example, Widder
[1971]) that R, is the Fourier transform of a positive semi-definite
matrix S,(dw) of bounded measures, that is,

1 F .
R(t) = 5 f e S, (dw) (1.6.7)
-Q0
and
[0 o]
] S.(dw) = 27R,(0) < oo (1.6.8)
-Q0

The corresponding inverse transform is

+00
S, (dw) = f e~ 4 R () dr (1.6.9)

-0

The matrix measure S,(dw) is referred to as the spectral measure of
the signal u. In particular, if ¥ has a sinusoidal component at frequency
wo, then u is said to have a spectral line at frequency wg. S,(dw) has
point mass (a delta function) at wy and —wq. If u(t) is periodic, with
period 27/wy, then S,(dw) has point mass at wy, 2wg,... and - wg,
- 2wy,... . Further, if u(¢) is almost periodic, its spectral measure has
point masses concentrated at countably many points.

Since R, is real, (1.6.9) shows that Re(S,) is an even function of w,

and Im(S,) is an odd function of w. On the other hand, (1.6.1) shows
that

R,(t) = R](-1)

Therefore, (1.6.9) also shows that Re(S,) is a symmetric matrix, while
Im(S,) is an antisymmetric matrix. In other words,

Sidw) = S;(dw)

Equations (1.6.1) and (1.6.9) give a technique for obtaining the
spectral content of stationary deterministic signals. For example, con-
sider the scalar signal
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u(t) = sin(w;t) + sin(wyt) + f(1) (1.6.10)

where f(¢) is some continuous function that tends to zero as ¢ — co.
The signal u has autocovariance

R (1) = —é—cos(w,t)+%cos(m2t) (1.6.11)

showing spectral content at w, and w,.

The autocovariance of the input and of the output signals of a
stable linear time-invariant system can be related as in the following pro-
position,

Proposition 1.6.2 Linear Filter Lemma

Let y = H (u), where Hisa proper, stable m x n matrix transfer func-
tion, with real impulse response H (¢).

If u is stationary, with autocovariance R,(t)
Then y is stationary, with autocovariance

oo OO
R(t) = [ [H@)R( +71-1)H (1) dry dry  (1.6.12)

-00 -00
and spectral measure
Sy(dw) = H(jw)Sydw)HT(jw) (1.6.13)

Proof of Proposition 1.6.2
We first establish that y has an autocovariance, by considering
to+ T 10+ 7T
7 [ ryTaend - g [ JHeue-man)

: (juT(z +1-1)H (1p)dry)dr  (1.6.14)

For all T, the integral in (1.6.14) exists absolutely, since H is stable, and

therefore H € L,. Therefore, we may change the order of integration,
to obtain

to-n+T

ij(Tl)dTI lT f u(@u'(t +o+7,-1)do

to—m1

(H (1)) dry) (1.6.15)
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The expression in parenthesis converges to Ryt +7,-7,) as T— oo,
uniformly in #o. Further, it is bounded as a function of T, ¢y, r; and 7,
since, by the Schwarz inequality

I to-7+ T
I? f u@u'(t +o+71,-1)do
Ig—-7
to+ T
< sup = [ Ju()dr (1.6.16)
to, 7 T i

Hence, by dominated convergence, (1.6.15) converges uniformly in ¢, as
T - 0o, to (1.6.12), so that y has an autocovariance given by (1.6.12).
To complete the proof, we substitute (1.6.7) in (1.6.12) to get

o= [[HEYdr [0 8, (do) BT () i

R,(1)

= oo [ ([TH @) dn) Sude) ([T H () dr)

e
2r
Note that (1.6.17) is the Fourier representation of R,, so that, using the
fact that H(z) is real

Sy(dw) = H(- jw)S,(dw) H(jw)
H ' (jw) S,(dw) HT (jw) (1.6.18)

j e H (= jw) S,(dw) HT(jw) (1.6.17)

a

Remark
It is easy to see that if u has a spectral line at frequency wg, so does p,
and the intensity of the spectral line of y at wy is given by (1.6.18).

Note, however, that if H (s) has a zero of transmission at wg, then the
amplitude of the spectral line at the output is zero.

We will also need to define the cross correlation and cross spectral
density between two stationary signals.
Definition Cross Correlation

Let u: IR, —>IR" and y: R, - IR™ be stationary. The cross correlation
between u and y is defined to be the following limit, uniform in ¢,
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to+ T

Ru(®) = lim + [ ymuTc+ndr e R™"  (16.19)

T+ T I

It may be verified that the relationship between R,, and R, is

Ry(1) = RL(-1) (1.6.20)

and the Fourier transform of the cross correlation is referred to as the
cross spectral measure of u and y.

The cross correlation between the input and the output of a stable
LTI system can be related in much the same way as in proposition 1.6.2.

Proposition 1.6.3 Linear Filter Lemma—Cross Correlation

Let y = H(u), where H is a proper stable m x n matrix transfer func-
tion, with impulse response H(t).

If u is stationary

Then  the cross correlation between u and y is given by

[0 o]
Ry(t) = [ H(r)Ry(t +71,)dry (1.6.21)
-0
and the cross spectral measure is
Syldw) = H*(jw)S,(dw) (1.6.22)

Proof of Propesition 1.6.3

The proof is analogous to the proof of proposition {.6.2 and is omitted
here.

CHAPTER 2
IDENTIFICATION

2.0 INTRODUCTION

In this chapter, we review some identification methods for single-input
single-output (SISO), linear time invariant (LTI) systems. To introduce
the subject, we first informally discuss a simple example. We consider
the identification problem for a first order SISO LTI system described by
a transfer function

W) 5 k,
-~ = P(s) = 2.0.1
F(s) ) S+a, ( )

The parameters k, and g, are unknown and are to be determined by the
identification scheme on the basis of measurements of the input and out-
put of the plant. The plant is assumed to be stable, i.e. a,>0.

Frequency Domain Approach

A standard approach to identification is the frequency response approach.
Let the input r be a sinusoid

i r(t) = sin(wgt) (2.0.2)
The steady-state response is then given by
)?t) = msin(wg? + ¢) (2.0.3)

where
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