#1 A proposito della proprietà C.2.2. a pag. A.47 del testo Teoria dei Sistemi e del Controllo di G. Marro, non mi risulta chiaro perché AATy appartenga a im(A). (Gabriele Tinti) Un vettore ottenuto postmoltiplicando la matrice A per qualunque espressione (es. ABCDv ove B,C e D sono matrici di dimensioni compatibili e del tutto generiche) appartiene necessariamente al sottospazio im(A) in quanto combinazione lineare delle colonne di A. #2 A pagina 17 del libro di testo non mi è chiara la definizione della proprietà di causalità della funzione di transizione dello stato, descritta al punto ii). Forse è sottinteso che t0 <= t <= t1? (Marcello Romani) Certamente. #3 Non ho ben capito il senso della proprietà 5.6.2 del libro del professor Marro Teoria dei sistemi e del controllo. Perché un sistema lineare e stazionario costituisce una realizzazione minima se e solo se è completamente controllabile e osservabile? Non è in contraddizione con l'affermazione che la forma minima di un sistema si può ricavare dalla scomposizione canonica di Kalman prendendo i blocchi 2 e 4? Non si dovrebbe prendere perciò solo il blocco 2? È errata la proposizione, l'affermazione (i miei appunti), oppure le due cose non sono in contraddizione tra di loro? (Gianluca Tonti) La proprietà 5.6.2 fa riferimento alla realizzazione minima di una risposta impulsiva e non alla forma minima di un sistema; tale definizione richiede che la realizzazione sia del minimo ordine compatibile con la risposta impulsiva considerata e questo richiede, ovviamente, che essa sia completamente raggiungibile ed osservabile dato che la risposta impulsiva di un sistema dipende solo da tale parte. #4 Sul libro di teoria del prof. Marro, a pag. 33, è data una definizione di matrice aggiunta che non mi è molto chiara: la matrice aggiunta è la trasposta (o la coniugata trasposta) della matrice dei complementi algebrici [Aij]T (o [Aij]*. Se la nozione di complemento algebrico fosse la seguente: "-a è il complemento algebrico di a" ... (si omette la parte rimanente della domanda in quanto basata sulla ipotesi precedente). (Michele Piunti) Se la definizione di complemento algebrico dell'elemento di una matrice fosse quella da lei indicata bisognerebbe mandare al macero tutti i libri di algebra lineare, dato che riportano una definizione completamente diversa che lei dovrebbe conoscere in quanto presente nei programmi di corsi inseriti nel suo curriculum.
#5
A pag. 117/118 del libro di teoria, nella dimostrazione del Teorema 4.2.1,
si suppone ||x(t V(.) è non crescente (e non non decrescente) lungo una traiettoria (dato che la sua derivata rispetto al tempo è negativa). Credo che nell'Errata Corrige del testo sia presente la correzione di questo errore. #6 A pag. 163 del libro di teoria c'è scritto che l'osservatore modello non può essere usato nel caso il sistema da osservare sia instabile. Cosa succede se invece è semplicemente stabile? L'errore potrebbe mantenersi limitato e non tendere a zero, anzi tendere ad un valore costante? In questo caso l'osservatore fornirebbe un risultato sbagliato. Non è allora da escludere anche questo caso? (Tue Jan 4 18:41:21 2000, Alessandro Caselli) Se si usa come osservatore un modello del sistema da osservare è necessario che tale sistema risulti asintoticamente stabile dato che la dinamica dell'errore coincide con quella del sistema. Per gli osservatori identità (o, meglio, per un osservatore "misto") è necessario riuslti asintoticamente stabile la parte non osservabile del sistema dato che la dinamica dell'errore di ricostruzione dello stato di tale parte è la stessa del sistema. #7 Il viceversa della Proprietà C3.1.4 a pag. 92 del libro di testo vale per ogni tipo di sistema? Anche per i non lineari stazionari e non stazionari? (Mon Jan 17 15:59:26 2000, Claudio Beltrani) La proprietà indicata (completa osservabilità e ricostruibilità) vale solo per i sistemi lineari grazie alla proprietà di scomposizione della risposta. Può facilmente convincersi di questo pensando al problema della diagnosi e dell'incasellamento per i sistemi a stati finiti. #8 Potrebbe spiegarmi in base a quale proprietà viene dimostrata la Proprietà 5.1.3 pag 140-141 del libro del prof. Marro? In particolare non capisco il passaggio: c.o.(ker YTA)=c.o.(A-1 ker YT), dove con c.o. indico il complemento ortogonale e con YT la trasposta di Y. Anche nella dimostrazione dell'Algoritmo 5.2.2 pag. 147 non capisco in base a quale proprietà si possa affermare che c.o.(A-1Z)=AT c.o.(Z). (Sun Feb 13 11:33:08 2000, Andrea Di Vincenzo)
Lo spazio nullo di YTA è il sottospazio contenente tutti i vettori
x che vengono mappati dalla trasformazione lineare A nello spazio nullo di
YT. E' quindi costituito dalla immagine inversa secondo A
dello spazio nullo di YT; si tenga ben presente che la notazione
A-1 indica l'immagine inversa secondo la trasformazione lineare
A e non l'inversa della matrice che descrive tale trasformazione lineare
una volta che sia stata scelta una base opportuna. #9 Tentando di dimostrare la proprietà B.6.1 a pag. a.35 del libro del prof. Marro mi sono imbattuto in una difficoltà concettuale. Scelto uno spazio vettoriale V e un vettore generico v che gli appartenga, esso è unico ma non è unica la sua rappresentazione che è relativa alla base scelta. Anzi, le basi sono infinite e quindi pure le rappresentazioni di v. Nel corso della dimostrazione, però, non sono riuscito a fare a meno di assumere un riferimento "assoluto", identificandolo con la base principale. Voglio dire che ho assunto che i vettori delle due basi {b1,...,bn}, {c1,...cn} venissero rappresentati mediante le loro componenti rispetto alla base principale, e il resto di conseguenza. La domanda è: è una necessità reale quella di riferirsi alla base principale e normalmente lo si fa in maniera implicita oppure è una scelta arbitraria (o superflua) fatta da me? (Thu Feb 24 16:13:23 2000, Andrea Di Vincenzo) Quello che è necessario è scindere il concetto di vettore da quello della sua rappresentazione rispetto ad una base; ciò risulta ovviamente meno immediato quando si considerano vettori costituiti da n-ple di scalari dato che risultano omogenei con le loro rappresentazioni rispetto alle basi. | ||||||||
Domande al docente | FAQ | Messa in lista | Risultati degli esami | Testi d'esame | Autovalutazione Materiale didattico | Imparando insieme | Tesi | Link | Forum | Documenti | Video | Mappe di Bologna |