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ABSTRACT: Structural Health Monitoring (SHM) methodolegiare taking advantage of the development of the new fanufie
MEMS sensors and of the progress in network technologiésteisystems will rely on intelligent sensors performingglty data
filtering, elaboration and model identification, conneabedr suitable buses. This paper describes some familiesubivariate
models that can be used in SHM-oriented identification mhoees and, in particular, the extension of AR models known as
AR+noise. It describes also the implementation of a new cheé SHM system, the Teleco SHM602, in the tower of the
Engineering School of Bologna University and the multisggimodels identified from the data collected by this system.
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1 INTRODUCTION other meteorological phenomena, vehicle traffic, seiswents,

Structural Health Monitoring (SHM) methodologies [1], i mass movements [4] or use of specific excitation hardware

moving, taking advantage of the unprecedented developmglﬁ?lmicgag'cal Sha"‘?f [5#] The state of tgf S trléc'gure c;an be
of sensor, microelectronics and microprocessor techiedog evaluated by comparing th€ responses obtained In reterence

towards their life-long integration in new projects whilglls ('nt?(ﬁlrtl)t)’) cogdmonstyvnh the curre?t oneds;bthg_se ct:lcmessms
playing the role of advanced analysis tools for evaluatimeg geould be (and, sometimes, are) performed by directly exirac

state of structures not endowed with permanent monitorsg Sfrom the coIIecte_d time serie_s information depending oy o
tems. In particular, the introduction of advanced MEMS sefs the structure, for instance their power spectra.
allows the realization of systems that conjugate a contbéost ~ In general it is preferable to avoid the storage and manipu-
with performances suitable for SHM applications. lation of the enormous amounts of data usually generated by

Traditional SHM systems are essentially composed bySdiM systems and to work only on some form of concentrated
certain number of analog sensors (accelerometers, saageg, information extracted from the data [2], like dynamic madel
temperature sensors) connected, through signal conidigjonextracted from the data by means of identification techrique
units, to multichannel data loggers. The evaluation of thEhese techniques allow not only for a very large condensatio
information contained in the data is then performed ofelby of information but can be also effectively used to separate
experts relying on suitable models of the structure to byaed the information contained in the acquired data sets from the
and on the compliance of these models with the measu@aservation errors due to the intrinsic noise of the seresurgo
data [3]. The new generation of SHM systems appeariggher errors due to the inevitable misfits between the censiti
now on the market relies on designs that integrate advanedass of models and the real process to be described. Thus the
sensor technologies with distributed computational poagr power spectrum associated with an identified model will look
well as efficient implementation of identification methooilgies as (and will be) a smoothed version of that directly obtained
to realize intelligent sensors that locally elaborate idigation by applying a FFT to the measured sequences that will contain
models and exchange data, information and models on a lo@gny spurious lines due to additive noise.
network managed by a control/storage unit usually acciessib |gentified models play thus the role (common to all models)
also in a remote way. of describing the behavior of a real process to which theykho

be equivalent; Zadeh [6] defines system identificatiorthes

2 MODELING DATA IN SHM APPLICATIONS determination on the basis of input and output, of a system
All dynamic SHM implementations rely on data, measuredithin a specified class of systems, to which the system tester
with a suitable sampling rate, acquired by a certain numberis equivalent Zadeh'’s definition, however, must be considered
accelerometers mounted on the structure to be monitored. Tmly from the conceptual point of view since it cannot be
measures obtained from these sensors are the structuomsespstrictly applied even outside the approximations impligdhe
to external or internal mechanical excitations due to wind aidentification context because mathematical models doesti
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always an approximation of the real systems whose actsaldom measured (usually this happens only when artificial
structure and nature is always remarkably more complext Jirgouts are applied for test purposes by means of hammers,
to mention some of the reasons of this approximation, phaysienechanical shakers or other methods); in almost all perntane
systems have always a spatial distribution and cannot betlgxaimplementations of SHM systems the excitation is given
described by lumped parameter models; real systems are &gonatural phenomena, vehicle traffic, seismic events, wind
nonlinear and, sometimes, non stationary. The most freétyjuerpressure and is not directly measured. The available data ar
used models are, however, linear, time—invariant and haite fi thus given by a sequence lbfobservationsy(1),y(2),...,y(L)
orders; despite these limitations their behavior can dmmst wherey(t) denotes the vector of acceleration measures, i.e.
an excellent description of real processes over limitedetim T
intervals and in suitable ranges of input(s) variations. y(t) = [yr() y2(t) ... ym(t)] . 1)
Moreover, identification procedure operate in presengeclass of models frequently used to model observations of
of process and/or observation disturbances and on limitgfis kind is given by multivariate AR models, described bg th
sequences of data that make it impossible to associate k& singlation

model of the selected class of models, to an observed data
set unless specific criteria are introduced. In other wordsY(t) = QuY(t=1)+Qay(t—=2)+... + Quy(t — p) +&(t) (2)

since no model will describe exactly the considered proc@ssyhere the matricexQ;, (i = 1,...,u) are square i x m)
specific model can be selected only by minimizing a specifigefficient matrices,
cost function, associated with the planned use of the model

[7]; it is thus possible to extract, from the same data, model G Gz - Oimi

optimized for prediction, control, filtering, fault diagsis etc. Q = Qi Gz .- Gomi 3)
These considerations underline that carrying out an itieati : S

tion experiment requires, as first steps, the collectioruitéble Omii Om2i  --- Ommi

process data, the selection of a model class and the intioduc
of a cost function congruent with the planned use of the mod
Model classes can concern state—space or input—outputisnode et) =[e(t)ex(t) ... em(t)]T (4)
but this aspect concerns only the structure of the algogthm
for deducing the models from the data, not the quality o

the obtained models. What really matters is the stochashic©>°€S ZW'th null expected valuefeg)] = 0, and with

. . . . __variancesgs; these processes can be mutually correlated so
environment considered in the selected class of modelghiee el p y

L . %hat their covariance matrix is not necessarily diagonay B
description (usually by means of stochastic processeshef Henoting withz— the unitary delay operator, model (2) can be
errors that affect the data (process noise, additive ohsernv 9 y y op '

errors etc.). Of course the best results are obtained by usﬁ%so written in the compact polynomial form

model classes whose stochastic environment describesin th Q(z h)y(t) = e(t) )
most realistic way the actual errors affecting the obséemat
Another model feature that can assume great importan\Me1
concerns the difference between the use of multivariate (or Qz Y =1-Qzt-...—Quz X (6)
multivariable as these models are called in the control)area . .
models and univariate (or scalar) ones. If we consider agascM0de! (2).(5) belongs to the family of equation error models
wherer inputs andm outputs are present, it is possible t@nd Its (_)pt_|mal predictor (minimal varlance and whitenebs o
consider a description given by a collection f univariate the prediction error on every output) is given by [7]
submodels Where every submod_el is aﬁeqted_ by all inputs_ and  y(t) =Qy(t—1) + Quy(t—2)+... +Quylt—p) (V)
generates a single output or a single multivariate modei it ) o R o
inputs andm outputs. If we disregard the overparameterizatiod?d its prediction erroe(t) = y(t) — y(t) = e(t) coincides
associated with the first choice (that affects, however, ynalith the equation error. By denoting with a generic set
important aspects like parameter uncertainty, computatio ©f parameters of the model i.e. a generic set of entries of
loads and suitability for diagnosis applications) thedetams the matricesQ;, the prediction error obtained by using this
could be indifferently used for applications like, for iaste, Parameterization in predictor (7) will be denoted&is 6) =
prediction. Only a multivariate model will, however, deber Y(t) —Y¥(t,8); it coincides withe(t) only when the entries of
explicitly the dynamical relations between the differentputs 6 are the exact parameter§;, of the AR process that has
and this makes it far superior for fault diagnosis applmagi ~ 9enerated the data. Since equation error models are maiety u
for prediction and control, the cost function to be minintier

2.1 Multivariate AR models for SHM analysis estimating their parameters is given by the sum of the sguadre
the Euclidean norms of the prediction errefs, 0)

'g?e integem denotes the memory of the model and

a vector whose elementg(t) (i = 1,...,m) are white

ereQ(z 1) is the polynomial matrix

In typical SHM applications the data are observations oleti

by means of accelerometers properly solidarized to thetstre ()
to be monitored; the observations are performed, in a
synchronous way, with a sampling frequency selected on the
basis of the maximal frequency of interest. The process —
input, i.e. the excitation applied to the structure is only

1 L
let,0) 15 = < e(t,0)"e(t,0)
1 ? N t:§+l

I
M~

Zl= Zlr
0
=

)
i S a8 ®)
=1 =
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whereN = L —pu and 6 is the vector of the coefficientsor others [7].

appearing in thé-th row ofQ(z %)

©)

By equating to zero the derivatives with respecitof J(0) we

6 = [Qill---Qilm---Qiml---Qimm}T~

2501

These criteria are usually formulated for the
univariate case but can be easily extended to the multtearia
one. While all previous criteria give correct results foralat
generated by true AR processes, it must be emphasized that
this happens only in the context of computer simulations;
real processes are intrinsically distributed, the corraodel

obtain the Least Squares (LS) estimate of the model par&mef@emory should be infinite and different criteria can lead to
and it can be proven that this estimate is asymptoticallyas#tl jitterent evaluations.

and, when the noise processg$) are gaussian, efficienti.e.its 5 rgjiaple criterion that can be applied in the identificatio
covariance matrix equals the KramRao lower bound [7], [8]. 4t yeq) processes and that can be used not only to select a

It can be observed that the structure of cost function (&l
separate estimates of the parame®&ré = 1,...,m); this can
be performed as follows. Define the Hankel matrix of OUtplétquation errorse

samples
Yi(;) yi(g) yi(IJ)l
Hiy) = Y|(: ) YI(: ) YI(H:+ ) 7 (10)
Yi(N) ¥i(N+1) yi(L—1)
the matrix
H=[H(y1)H(y2)...H(ym)] (11)
and the vector of output samples
V=R D) yie+2) . i) (12)

Then, under suitable excitation conditions (non singtyaof
(HTH)), the LS estimate o8, is given by
él — (HTH)leTyiO

(i=1,....m). (13)

The predictions of thé-th output are the entries of the vector

fi=H&=H(HTH)*HTy; (14)
so that the associated equation errors are given by
&=y —%i=01-HHH) H)Y (15)
and their sample covariance matrix is
Se=YT(I—HHTH)THT)?Y°/N. (16)
where
Y= [Yi V5. Vil (17)
The covariance matrix of the estimate@fs [7]
Zg =0gE[(HTH)™] (18)

proper model order but also to validate the whole identificat
procedure consists in checking the whiteness of the esiinat
this happens only if the model order is
sufficient and the description of the considered process by
means of an AR model is acceptable. A good strategy can thus
consist in starting withu = 1 and to increasg! checking, at
every step, the whiteness of the sequemgess’soon as all these
sequences satisfy a proper whiteness test (for instayéeest

with a number of degrees of freedom equal to 2—3 times the
model memory and a reliability level of, say, 99%), a suiabl
model memory has been reached. It must, however, be observed
that the use of higher values, while leading to overpararizeit
models and to higher uncertainty levels for the parametieess

not lead, usually, to a crash of the identification procedur®
worse results and this can be easily explained by the previou
observation on the nature of real processes. Figure 1 shows a
possible interpretation of multivariate AR models that den
seen as filters driven by the input vecsgr) with transfer matrix

Q(z 1)~ and output vectoy(t). It must be observed that the
input e(t) influences the output at the same tirgé), i.e. that

in this system there exists an algebraical link betweentiapd
output.

It has been shown in [9] that reliable procedures for modal
identification can be used to develop an efficient modaldbase
Structural Health Monitoring system using, for example, AR
(or ARX) coefficients as damage—sensitive parameters. When
these algorithms are applied to records including the sirat
response to a ground motion, they can lead to unreliable
results due to the fact that the hypothesis about the input
(white noise) can be not fulfilled by the earthquake spectra.
It is worth noting that the near—fault ground motion spectra
are significantly different from those obtained in a far-fiel
condition [10] in that usually near—fault earthquake can be
viewed as an impulse; moreover intensity, ground motiotizpa
variations and local site conditions can influence signifilya
the earthquake spectra. For these reasons, in some cases the
ground motion spectra can be assumed as flat at least close to

where E denotes mathematical expectation and is usudhyg frequency range of interest. In these cases, the inpeof

approximated as

S =02(H™H)™L. (19)

All previous steps can be easily performed on the basis of a
of observed process sequences but require a previous dafoic

the model memoryy (the model order is = deg detQ(z 1) =

mgl).
true multivariate AR process, only one choice forand n

is possible and could be estimated by applying suitablerorde

selection criteria like FPE (Final Prediction Error), AlSlaike

Information Criterion), MDL (Minimum Description Length)

Of course, when the observations are generated by a

process to be identified can be assumed as white.
The choice of the algorithms to estimate the parameters of
multivariate AR models is not limited to Least Squares; haot
ssibility concerns the use of Yule—-Walker equations or of

et) —  QzH ™ —— (1)

Figure 1. Interpretation of multivariate AR models
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the wide class of Instrumental Variable (V) algorithms fct w(t)
Yule—Walker equations constitute a subcase of the IV amgbroa
where past outputs are used as instruments). These options
can be used to compensate a possible lack of whiteness in the &t)—> Q(z'1)™! y(t)
equation error sequences (by avoiding the use of the first low
order equations when using Yule—Walker equations, by Setgc
suitable instruments when relying on IV approaches) but tea Figure 2. Structure of AR+noise models

a larger uncertainty on the parameter estimates i.e. taicove

matrices of the estimates larger than the LS one. Othgp Advanced AR modeling: AR+noise representations

possibilities concern the use of on-line algorithms, tgihc . .
on—line Least Squares (weighted or not) to update a modeITégd't'onal AR models are endowed with many advantages that

long as new measures are performed. The Levinson algoritﬁ ge from the easy estimation of their parameters by means

L . . of unbiased and efficient algorithms like LS to the stabitfy
offers an elegant and efficient way to compute increasirdgror . . ; . o
9 y P %e associated optimal predictor (independent from tHhgilita

AR models from data covariances. A sequence of increasin Cih del. Th del be int ted ding t
order AR models can be estimated also directly from the data e model). €s€ models can be Interpreted according to
the scheme reported in Figure 1 where the equation eftor

means of Least Squares approaches. . : . . . .
q bp is considered as input of a filter; in these models the eqguatio

Once that a multivariate AR model has been identified, §ror eft) is jche_only tool available to balance the different
. . ; . . . . causes of misalignment between the model and the data (non
is also possible to obtain equivalent representations Hfdl fu

o ) S : linearities, process noise, observation errors, nonostatity
specific needs; control applications could call, for instrfor

: etc.). A more sophisticated way to manage this inevitable
state—space models. Other representations frequentlyarse .7 S 4 = L
) . . misalignment consists in introducing a specific descriptd
the transfer matrix between the driving noise and the outp;d;| . ;
Q(zY)L, the pulse response (AR models do not considg e observation errors, separating thesg errors from thoséo
' . ) ; . : %{her causes. AR+noise models consist in AR models whose
any measurable input; the input pulse is considered on the,

output is considered as affected by an additive observation
components o&(t)) and the model power spectra and cross— : : .

: error (Figure 2). AR+noise models are thus described by the
spectra. When the models must be used for fault diagnosis

applications, as in SHM, the choice of the representatidmeto equations

used can be critical. Consider, as an example, a non miryimall ) — D+ ) et 20
parameterized model; its parameters could exhibit large bu W(t) B Ql:ﬁ( t) Quy (t—p) +e(t) (21)
mutually compensated variations also in absence of signific y = Yyt +w(t) (21)

process changes. It is thus important, to observe pOSSiWﬁere

changes, to select model properties reflecting actual tiamz

of the identified process; possible choices could conceen th

parameters of minimally parameterized models, model polés a vector whose elementsi(t) (i = 1,...,m) are white

frequency responses, power spectra and cross—spectra. processes mutually uncorrelated, uncorrelated with thieesn
of e(t), with null expected value, [&;(t)] = 0, and with

Another desirable feature usually absent in identified rfode/ariancesy;; the covariance matrix of(t) is thus diagonal
concerns the physical significance of the models; the models ) s o )
obtained by means of identification techniques can be very Sw=diag [ Oy Oz - - Oym] - (23)

accurate but usually lack, differently from those obtai . . .
y y 3 ore general AR+noise schemes could consider additive

means of traditional modeling techniques, a direct ph sic’gI ) .
g g phy loured noise on the observations and/or the presence of

meaning. This requirement and the previous one lead ofteh

to the use, in SHM applications, of the spectra and cros orrelations between the observation noises. The inteirest

spectra associated with the identified multivariate modEiss HM |:jnplementit|o_rl1lsk,)of t::e flrs_t e;ﬁensmn "T modebst white ¢
information reflects well defined physical properties of th ccond one, as It will be Snown In the Sequel, can be necessary

structures and can be easily linked to project—level evaos. ora rgahsu_c_des_cnpnon of SOMe Sensors.
The identification of AR+noise models is a job more complex

than the identification of AR models because it is necessary t
Remark 1 Relation (2) is universally considered as thestimate not only the parameters@fz ) and the covariance
standard definition of multivariate AR models. This defmiti matrix > but also the covariance matriX,, and, in this
is, however, afflicted by severe conceptual limitationsdose stochastic context, LS would lead to biased estimates.
of the implicit assumption that all channels have the sameThe parameters of AR+noise models could be estimated
memory; thus the order of the processes described by thbgemeans of IV algorithms; the disadvantage of this solution
models can assume only values multiples of the model memargncerns the uncertainty of the estimates and the fact that
More general and minimally parameterized representatidnsthe variances of the equation errors and of the observation
multivariate systems have been described in [7] and [11] andise are not estimated. Another approach could be based
could be used also in the SHM context to obtain more physicathn the mapping of the AR+noise identification problem into
precise descriptions of complex structures. Good resalts an EIV identification scheme, more precisely into the Frisch
usually be obtained also by using basic AR models like (3), (cheme that allows estimating, by means of a search progedur

W(t) = [wi(t)Wa(t) ... Win(t)]" (22)
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both model parameters and the observation and process n&eseark 2 The subtraction from the main diagonal Bfof

variances [12]. The estimate of AR+noise models by meath®e diagonal elements &, (in blocks of u elements) can

of a Frisch—scheme approach has been described in [13] lEad to non positive definite matricésli "TH — NZ,e) and/or

the univariate case but can be extended to the multivarigteestimate unstable models. The reasons derive both from

context. An approach of this kind has the advantage of leadithe approximation associated with the use of sample qigmtit

to a congruent solution and to be intrinsically suitableféarlt and from the assumption of zero off-diagonal elemeniS,in

diagnosis; a possible disadvantage concerns the factbat\When this happens it is possible to modify relation (28) as

stability of the obtained model is not assured. Another veay follows

solve the problem could rely on the use of compensated least

squares schemes, like BELS algorithms [14]. These algosth 6 =(HH-KkNZe) "HTY" (i=1,...,m) (29)

are iterative and, usually, fast but they do not assure eeith

congruence nor convergence. where 0< k < 1 is chosen in order to respect the condition
An approach suggested by filtering techniques applied (H™H —kNZoe) > 0 and the stability constraint.

speech enhancement relies on the separate estimate of the
variance of the additive observation noise from sequenc%s THE SHM SYSTEM IN THE TOWER OF THE ENGI-

collected in absence of signals (silent frames). This egém NEERING SCHOOL OF BOLOGNA UNIVERSITY

is then used to compensate the presence of the observatigg building where the tower is located has been designed by
noise reducing thus the AR+noise estimation problem to thge Italian architect Giuseppe Vaccaro and was built betwee
estimation of an AR model. A procedure of this kind can be933 and 1935 (Figure 3). The tower is actually an archive
adopted also in the multivariate case and effectively applh  capable of holding over 60,000 volumes, arranged on movable
the SHM context. It allows also the extension to more genef@ktal shelves. It is approximately 45 meters high and its
contexts where not all observation errors are independht &tructure is characterized by 4 rectangular columns which
this can be of practical relevance in SHM. To illustrate thi§upport nine concrete slabs. The measures are performed by

two—step procedure, consider, for an AR+noise process, figans of a prototype of the advanced SHM system developed by
covariance matrix

*T g *
ZF =1liMNSe HH (24)

N
whereH* has the same structure Hsand is constructed with
samples,y*(t), of the AR part of the model. Because of
the relationy(t) = y*(t) + w(t) and of the assumption of non
correlation betweee(t) andw(t), and, consequently, between
y*(t) andw(t), it follows that

. HTH
> =1Iim N—so00 T ="+ 2oe (25)

whereZ e denotes the covariance matrix of observation errors
Soe = diag[ oy ... Oamlu] - (26)

If the covariance matrix of the observation errdtg, is known,
it is possible to deduce, from (25F* and, consequently,
reduce the problem to the identification of an AR process by
substitutingH™H with NZ. In practical applications relation
(25) will be applied to the available sample quantities byanse
of the relation

HTH* =H™H — NZqe (27)
and since, under the assumption of non correlation between
e(t) and w(t), asymptoticallyHTy? = H*Ty*°, the minimal—
variance and asymptotically unbiased estimate of the ARainod TELECO
parameters is S

SHM SENSOR TSM02

6 = (HTH-NZoe) HTY?  (i=1,...,m). (28) L e
y SIN:
An estimate ofZ,, can be obtained by computing the sample
covariance matrix of output sequences that do not contain an
useful information; this can be verified by means of a whigsne
test on the components wft). The deduction 0Eqe from Z,y is Figure 4. The TSM02 sensor
then immediate.
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Teleco, the SHM602 [15], compliant with the recommendationdentification of AR+noise models [13]. The dynamic behavio
reported in [16] and [17].
The main components of this system consist in a cofccelerometers) installed in four different floors (M1-M4 i
troller/storage unit TSD10 and in intelligent sensing snitFigures 5 and 6). Their locations have been carefully chosen

TSMO2 (Figure 4) connected to the controller by means ofi@order to avoid nodal points (zero response points) on the fi
serial bus. Every sensing unit can send the measures of skeeral vibration mode shapes. Four piezoelectric siagie—
acceleration on two orthogonal axes and that of the temyrexat accelerometers (denoted as A1-A4 in Figures 5 and 6) have bee
the sampling frequency can be selected by the user at 20 Kmporarily installed in two of the previous locations fontrol

40 Hz or 80 Hz. These sensors rely on MEMS sensors and gurposes. A first set of measures has concerned the evaloétio
proprietary signal processing techniques and perform thlgo the signal variances in absence of excitations; this carabitye
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Section A-A

Figure 5. Accelerometer locations in the tower

8th floor

W

Figure 6. Accelerometer locations in the selected floors

10th floor

500

500

500

500

of the tower is monitored by means of four TSMO02 units (8

performed since the building is located in a quiet area,idets

traffic patterns. The results, referred to accelerationsmess in

mg (in term of variances and covariances), are reported ineTabl

1 where it can be observed that the noises onxthiedy axes of

the same unit exhibit a non negligible correlation; the ciavace

values associated with accelerometers of different ser(sot

reported in Table 1) are, on the contrary, quite modest, ithaire

one order of magnitude lower. This observation can be easily

explained since the two accelerometers of TSM02 sensors are

physically allocated on the same MEMS chip. It can also be

observed that the obtained variances are perfectly aligvitd

the nominal values of TSM02 units with the exception of the

fourth sensor whose noise level is approximately 20% lower.
The model actually used considered as outputs all 8 availabl

channels and the memory selected for the model was

10 (ordern = 80). The model described in the following

is limited, however, to four channels in order to comply

with space constraints without omitting any feature of ies¢

of the adopted procedure. The measures considered in the

construction of this reduced model are reported in Tableha T

identification has been performed by using AR+noise models

and the covariance matrix of the observation noise has been

constructed on the basis of the measures reported in Table 1.

Since two channels of the same sensor have been inserted in

the model, considering a diagonal covariance makjx for

the additive observation noise would not be congruent vhieh t

measured covariances; thus the evaluatiokpthat has been

actually used is

01087 —00421 0O 0
00421 00952 O 0
2w=| g 0 00986 0 (30)
0 0 0 00965

Table 1. Variances and covariances of measure noise

o7 o7 Oxy
Sensor M1 0.1087 0.0952 -0.0421
Sensor M2 0.0993 0.0986 -0.0379
Sensor M3  0.1061 0.0965 -0.0373
SensorM4 0.0773 0.0771 -0.0315

Table 2. Model outputs

Channel1 Channel2 Channel3 Channel 4
y1 Y2 Y3 Y4
Sensor M1 X axis y axis - -
Sensor M2 - - y axis -
Sensor M3 - - - y axis
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Figure 8. Power spectra g3; measures and model (red) Figure 12. Power spectra gf; measures and model (red)
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Figure 9. Power spectra g4, measures and model (red) Figure 13. Power spectra pf; measures and model (red)
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Figure 10. Power spectra pf; measures and model (red)  Figure 14. Power spectra pf; measures and model (red)

and congruent variations have been introduced>dg that a5 the previous one. The comparison between the power apectr

assumes the following form of the four observed sequences and those computed by means
01087, —0.0421l,, 0 0 o_f thg identified model is_ reporte_d in Figures 11-14. The
—0.0421I 0.0952| 0 0 significant peak frequencies obtained from these models are
2oe= 0 H 0 H 00986l 0 . reported in Table 3. It can be observed that the main resenanc
0 0 0 H 09651, frequency along the x axis is approximately 1.75 Hz while a

(31) secondary frequency is around 3.8 Hz; the resonance freguen
The first data set used for the identification has been redorddong the y axis is approximately 2.4 Hz.
on December 5, 2010 and concerns a small seismic event wit Ne cross—covariances between the output #2 and the outputs

magnitude 3.2 observed at a depth of 15 Km in the area of Cadtél #3 and #4 obtained with the models identified from the
San Pietro Terme, at a distance of 28 Km from Bologna. considered data sets are reported in Figures 15-17 that show

The tests on the positive definitenesgldfH — kN ) and good agreements; the worst result concerns output #1, in fac
on the stability of the model have shown thabD was the the modes associated to the first output are those excitgd onl
minimum acceptable value that could be assigndd to leave Marginally in the considered data sets. Similar resultshman
some margin, the models have been computed assignikg t8PServed on remaining cross—spectra.
one half of the limit value. A comparison between the power Finally, in Figures 18-19 a comparison between the power
spectra of the four observed sequences and those compute8R§gtra obtained from the MEMS measuresypfandy, and
means of the identified model is reported in Figures 7—10 &vher
tEe fscaling of the ElOtS has been selected in order to uneerli Table 3. Peak frequencies (Model 1/Model 2)
the frequency peaks.

A second model has been obtained from data recorded on 222222:; 1'27;’//;'?7’5 2'4552'425 3'72_5/3'85
December 6, 2010 concerning another small seismic eveht wit Channel 3 2'3/2'3 i ]
magnitude 3.0 observed at a depth of 24 Km in the same area ' '

Channel4  2.3/2.3 - -
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Figure 18. Power spectra gf: measures from MEMS-based

100 (black) and piezoelectric accelerometers (red)
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Figure 19. Power spectra g5: measures from MEMS-based
(black) and piezoelectric accelerometers (red)
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same positions is shown. It can be observed that the measi
are very similar in both cases. Even if the noise level Figure 20. Power spectra g$: ident. models obtained from
the measures is greater when MEMS-based sensing units MEMS-based (black) and piezoelectric accelerometers
considered, the identified models are strongly congruesd (s (red)

Figure 20). This confirms the good approximation of the re

process given by the considered models and also the sititabi] L.A. zadeh. From circuit theory to system theorpyoceedings IREvol.

of the SHM602 system for the performed analysis. 50, pp. 856-865, 1962. . _
[7] R. Guidorzi. Multivariable System Identification: From Observations to
Models Bononia University Press, Bologna, Italy, 2003.
4 CONCLUDING REMARKS [8] L. Ljung. System ldentification — Theory for the UsePrentice Hall,
. . . Englewood Cliffs, NJ, 1999.
Th|s paper has dlSCgSSQd some of the prOblemS Concemmg[g]"t—l. Sohn and C.R. Farrar. Damage Diagnosis Using Time Séwmedysis
identification of multivariate models in SHM and has outline ~ of Vibration Signals, Smart Materials and Structuresol. 10, n. 3, pp.

the potentialities offered by AR+noise models. It has alﬁo 446-451, 2001.

. . A. Bayraktar, A.C. Altunsik, B. Sevim, M.E. Kartal, T. Ker and Y. Bilici.
described the measures obtained from the MEMS-based SI'1.'9"(:omparison of Near and Far Fault Ground Motion Effects on theliNear

system Teleco SHM602 installed in the tower of the Engimgpri  Response of Dam-Reservoir-Foundation Systergnlinear Dynamics
School of Bologna University and the results obtained |[n vol. 58, n. 4, pp 655-673, 2009. . .
. . L . 11] R. Guidorzi. Equivalence, invariance and dynamicaltesyscanonical
identifying a multivariate AR+noise model from these data.” " modelling - Part I, Kybernetica vol. 25, n. 4, pp. 233-257, 1989. Part II,
Kybernetica 25, n. 5, pp. 386-407, 1989.
[12] R. Guidorzi, R. Diversi and U. Soverini. The Frisch seteein algebraic

and dynamic identification problem&ybernetika vol. 44, n. 5, pp. 585—
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