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ABSTRACT: Structural Health Monitoring (SHM) methodologies are taking advantage of the development of the new families of
MEMS sensors and of the progress in network technologies; future systems will rely on intelligent sensors performing locally data
filtering, elaboration and model identification, connectedover suitable buses. This paper describes some families of multivariate
models that can be used in SHM–oriented identification procedures and, in particular, the extension of AR models known as
AR+noise. It describes also the implementation of a new advanced SHM system, the Teleco SHM602, in the tower of the
Engineering School of Bologna University and the multivariate models identified from the data collected by this system.
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1 INTRODUCTION

Structural Health Monitoring (SHM) methodologies [1], [2]are
moving, taking advantage of the unprecedented development
of sensor, microelectronics and microprocessor technologies,
towards their life-long integration in new projects while still
playing the role of advanced analysis tools for evaluating the
state of structures not endowed with permanent monitoring sys-
tems. In particular, the introduction of advanced MEMS sensors
allows the realization of systems that conjugate a contained cost
with performances suitable for SHM applications.

Traditional SHM systems are essentially composed by a
certain number of analog sensors (accelerometers, strain gauges,
temperature sensors) connected, through signal conditioning
units, to multichannel data loggers. The evaluation of the
information contained in the data is then performed off-line by
experts relying on suitable models of the structure to be analyzed
and on the compliance of these models with the measured
data [3]. The new generation of SHM systems appearing
now on the market relies on designs that integrate advanced
sensor technologies with distributed computational poweras
well as efficient implementation of identification methodologies
to realize intelligent sensors that locally elaborate identification
models and exchange data, information and models on a local
network managed by a control/storage unit usually accessible
also in a remote way.

2 MODELING DATA IN SHM APPLICATIONS

All dynamic SHM implementations rely on data, measured
with a suitable sampling rate, acquired by a certain number of
accelerometers mounted on the structure to be monitored. The
measures obtained from these sensors are the structure response
to external or internal mechanical excitations due to wind and

other meteorological phenomena, vehicle traffic, seismic events,
mass movements [4] or use of specific excitation hardware
like mechanical shaker [5]. The state of the structure can be
evaluated by comparing the responses obtained in reference
(integrity) conditions with the current ones; these comparisons
could be (and, sometimes, are) performed by directly extracting
from the collected time series information depending only on
the structure, for instance their power spectra.

In general it is preferable to avoid the storage and manipu-
lation of the enormous amounts of data usually generated by
SHM systems and to work only on some form of concentrated
information extracted from the data [2], like dynamic models
extracted from the data by means of identification techniques.
These techniques allow not only for a very large condensation
of information but can be also effectively used to separate
the information contained in the acquired data sets from the
observation errors due to the intrinsic noise of the sensorsand to
other errors due to the inevitable misfits between the considered
class of models and the real process to be described. Thus the
power spectrum associated with an identified model will look
as (and will be) a smoothed version of that directly obtained
by applying a FFT to the measured sequences that will contain
many spurious lines due to additive noise.

Identified models play thus the role (common to all models)
of describing the behavior of a real process to which they should
be equivalent; Zadeh [6] defines system identification asthe
determination on the basis of input and output, of a system
within a specified class of systems, to which the system undertest
is equivalent. Zadeh’s definition, however, must be considered
only from the conceptual point of view since it cannot be
strictly applied even outside the approximations implied by the
identification context because mathematical models constitute
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always an approximation of the real systems whose actual
structure and nature is always remarkably more complex. Just
to mention some of the reasons of this approximation, physical
systems have always a spatial distribution and cannot be exactly
described by lumped parameter models; real systems are also
nonlinear and, sometimes, non stationary. The most frequently
used models are, however, linear, time–invariant and have finite
orders; despite these limitations their behavior can constitute
an excellent description of real processes over limited time
intervals and in suitable ranges of input(s) variations.

Moreover, identification procedure operate in presence
of process and/or observation disturbances and on limited
sequences of data that make it impossible to associate a single
model of the selected class of models, to an observed data
set unless specific criteria are introduced. In other words,
since no model will describe exactly the considered process, a
specific model can be selected only by minimizing a specific
cost function, associated with the planned use of the model
[7]; it is thus possible to extract, from the same data, models
optimized for prediction, control, filtering, fault diagnosis etc.

These considerations underline that carrying out an identifica-
tion experiment requires, as first steps, the collection of suitable
process data, the selection of a model class and the introduction
of a cost function congruent with the planned use of the model.
Model classes can concern state–space or input–output models
but this aspect concerns only the structure of the algorithms
for deducing the models from the data, not the quality of
the obtained models. What really matters is the stochastic
environment considered in the selected class of models, i.e. the
description (usually by means of stochastic processes) of the
errors that affect the data (process noise, additive observation
errors etc.). Of course the best results are obtained by using
model classes whose stochastic environment describes in the
most realistic way the actual errors affecting the observations.

Another model feature that can assume great importance
concerns the difference between the use of multivariate (or
multivariable as these models are called in the control area)
models and univariate (or scalar) ones. If we consider a process
where r inputs andm outputs are present, it is possible to
consider a description given by a collection ofm univariate
submodels where every submodel is affected by all inputs and
generates a single output or a single multivariate model with r
inputs andm outputs. If we disregard the overparameterization
associated with the first choice (that affects, however, many
important aspects like parameter uncertainty, computational
loads and suitability for diagnosis applications) these solutions
could be indifferently used for applications like, for instance,
prediction. Only a multivariate model will, however, describe
explicitly the dynamical relations between the different outputs
and this makes it far superior for fault diagnosis applications.

2.1 Multivariate AR models for SHM analysis

In typical SHM applications the data are observations obtained
by means of accelerometers properly solidarized to the structure
to be monitored; the observations are performed, in a
synchronous way, with a sampling frequency selected on the
basis of the maximal frequency of interest. The process
input, i.e. the excitation applied to the structure is only

seldom measured (usually this happens only when artificial
inputs are applied for test purposes by means of hammers,
mechanical shakers or other methods); in almost all permanent
implementations of SHM systems the excitation is given
by natural phenomena, vehicle traffic, seismic events, wind
pressure and is not directly measured. The available data are
thus given by a sequence ofL observations,y(1),y(2), . . . ,y(L)
wherey(t) denotes the vector of acceleration measures, i.e.

y(t) = [y1(t)y2(t) . . . ym(t) ]
T . (1)

A class of models frequently used to model observations of
this kind is given by multivariate AR models, described by the
relation

y(t) = Q1y(t −1)+Q2y(t −2)+ . . .+Qµ y(t −µ)+e(t) (2)

where the matricesQi , (i = 1, . . . ,µ) are square (m× m)
coefficient matrices,

Qi =




q11i q12i . . . q1mi

q21i q22i . . . q2mi
...

... . . .
...

qm1i qm2i . . . qmmi


 , (3)

the integerµ denotes the memory of the model and

e(t) = [e1(t)e2(t) . . . em(t) ]
T (4)

is a vector whose elementsei(t) (i = 1, . . . ,m) are white
processes with null expected value, E[ei(t)] = 0, and with
variancesσ2

ei; these processes can be mutually correlated so
that their covariance matrix is not necessarily diagonal. By
denoting withz−1 the unitary delay operator, model (2) can be
also written in the compact polynomial form

Q(z−1)y(t) = e(t) (5)

whereQ(z−1) is the polynomial matrix

Q(z−1) = I −Q1z−1− . . .−Qµ z−µ . (6)

Model (2),(5) belongs to the family of equation error models
and its optimal predictor (minimal variance and whiteness of
the prediction error on every output) is given by [7]

ŷ(t) = Q1y(t −1)+Q2y(t −2)+ . . .+Qµ y(t −µ) (7)

and its prediction errorε(t) = y(t) − ŷ(t) = e(t) coincides
with the equation error. By denoting withθ a generic set
of parameters of the model i.e. a generic set of entries of
the matricesQi , the prediction error obtained by using this
parameterization in predictor (7) will be denoted asε(t,θ) =
y(t)− ŷ(t,θ); it coincides withe(t) only when the entries of
θ are the exact parameters,θ ∗, of the AR process that has
generated the data. Since equation error models are mainly used
for prediction and control, the cost function to be minimized for
estimating their parameters is given by the sum of the squares of
the Euclidean norms of the prediction errorsε(t,θ)

J(θ) =
1
N

L

∑
t=µ+1

‖ ε(t,θ) ‖2
2 =

1
N

L

∑
t=µ+1

ε(t,θ)Tε(t,θ)

=
1
N

m

∑
i=1

L

∑
t=µ+1

εi(t,θi)
2 (8)
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where N = L − µ and θi is the vector of the coefficients
appearing in thei–th row ofQ(z−1)

θi = [qi11. . .qi1m. . .qim1 . . .qimm]
T . (9)

By equating to zero the derivatives with respect toθi of J(θ) we
obtain the Least Squares (LS) estimate of the model parameters
and it can be proven that this estimate is asymptotically unbiased
and, when the noise processesei(t) are gaussian, efficient i.e. its
covariance matrix equals the Kramér–Rao lower bound [7], [8].
It can be observed that the structure of cost function (8) allows
separate estimates of the parametersθi (i = 1, . . . ,m); this can
be performed as follows. Define the Hankel matrix of output
samples

H(yi) =




yi(1) yi(2) . . . yi(µ)
yi(2) yi(3) . . . yi(µ +1)

...
... . . .

...
yi(N) yi(N+1) . . . yi(L−1)


 , (10)

the matrix
H = [H(y1)H(y2) . . .H(ym) ] (11)

and the vector of output samples

y◦i = [ yi(µ +1) yi(µ +2) . . . yi(L) ]
T . (12)

Then, under suitable excitation conditions (non singularity of
(HTH)), the LS estimate ofθi is given by

θ̂i = (HTH)−1HTy◦i (i = 1, . . . ,m). (13)

The predictions of thei–th output are the entries of the vector

ŷi = H θ̂i = H(HTH)−1HTy◦i (14)

so that the associated equation errors are given by

êi = y◦i − ŷi = (I −H(HTH)−1HT)y◦i (15)

and their sample covariance matrix is

Σ̂e =Y◦T(I −H(HTH)−1HT)2Y◦/N. (16)

where
Y◦ = [ y◦1 y◦2 . . . y◦m ] . (17)

The covariance matrix of the estimate ofθi is [7]

Σθi = σ2
ei E

[
(HTH)−1] (18)

where E denotes mathematical expectation and is usually
approximated as

Σ̂θi = σ2
ei (H

TH)−1. (19)

All previous steps can be easily performed on the basis of a set
of observed process sequences but require a previous choiceof
the model memory,µ (the model order isn= deg detQ(z−1) =
mµ). Of course, when the observations are generated by a
true multivariate AR process, only one choice forµ and n
is possible and could be estimated by applying suitable order
selection criteria like FPE (Final Prediction Error), AIC (Akaike
Information Criterion), MDL (Minimum Description Length)

or others [7]. These criteria are usually formulated for the
univariate case but can be easily extended to the multivariate
one. While all previous criteria give correct results for data
generated by true AR processes, it must be emphasized that
this happens only in the context of computer simulations;
real processes are intrinsically distributed, the correctmodel
memory should be infinite and different criteria can lead to
different evaluations.

A reliable criterion that can be applied in the identification
of real processes and that can be used not only to select a
proper model order but also to validate the whole identification
procedure consists in checking the whiteness of the estimated
equation errors ˆei ; this happens only if the model order is
sufficient and the description of the considered process by
means of an AR model is acceptable. A good strategy can thus
consist in starting withµ = 1 and to increaseµ checking, at
every step, the whiteness of the sequences ˆei ; as soon as all these
sequences satisfy a proper whiteness test (for instance aχ2 test
with a number of degrees of freedom equal to 2–3 times the
model memory and a reliability level of, say, 99%), a suitable
model memory has been reached. It must, however, be observed
that the use of higher values, while leading to overparameterized
models and to higher uncertainty levels for the parameters,does
not lead, usually, to a crash of the identification procedureor to
worse results and this can be easily explained by the previous
observation on the nature of real processes. Figure 1 shows a
possible interpretation of multivariate AR models that canbe
seen as filters driven by the input vectore(t) with transfer matrix
Q(z−1)−1 and output vectory(t). It must be observed that the
input e(t) influences the output at the same time,y(t), i.e. that
in this system there exists an algebraical link between input and
output.

It has been shown in [9] that reliable procedures for modal
identification can be used to develop an efficient modal-based
Structural Health Monitoring system using, for example, the AR
(or ARX) coefficients as damage–sensitive parameters. When
these algorithms are applied to records including the structural
response to a ground motion, they can lead to unreliable
results due to the fact that the hypothesis about the input
(white noise) can be not fulfilled by the earthquake spectra.
It is worth noting that the near–fault ground motion spectra
are significantly different from those obtained in a far–field
condition [10] in that usually near–fault earthquake can be
viewed as an impulse; moreover intensity, ground motion spatial
variations and local site conditions can influence significantly
the earthquake spectra. For these reasons, in some cases the
ground motion spectra can be assumed as flat at least close to
the frequency range of interest. In these cases, the input ofthe
process to be identified can be assumed as white.

The choice of the algorithms to estimate the parameters of
multivariate AR models is not limited to Least Squares; another
possibility concerns the use of Yule–Walker equations or of

e(t) y(t)Q(z−1)−1

Figure 1. Interpretation of multivariate AR models
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the wide class of Instrumental Variable (IV) algorithms (infact
Yule–Walker equations constitute a subcase of the IV approach
where past outputs are used as instruments). These options
can be used to compensate a possible lack of whiteness in the
equation error sequences (by avoiding the use of the first low
order equations when using Yule–Walker equations, by selecting
suitable instruments when relying on IV approaches) but lead to
a larger uncertainty on the parameter estimates i.e. to covariance
matrices of the estimates larger than the LS one. Other
possibilities concern the use of on–line algorithms, typically
on–line Least Squares (weighted or not) to update a model as
long as new measures are performed. The Levinson algorithm
offers an elegant and efficient way to compute increasing–order
AR models from data covariances. A sequence of increasing–
order AR models can be estimated also directly from the data by
means of Least Squares approaches.

Once that a multivariate AR model has been identified, it
is also possible to obtain equivalent representations to fulfill
specific needs; control applications could call, for instance, for
state–space models. Other representations frequently used are
the transfer matrix between the driving noise and the output,
Q(z−1)−1, the pulse response (AR models do not consider
any measurable input; the input pulse is considered on the
components ofe(t)) and the model power spectra and cross–
spectra. When the models must be used for fault diagnosis
applications, as in SHM, the choice of the representation tobe
used can be critical. Consider, as an example, a non minimally
parameterized model; its parameters could exhibit large but
mutually compensated variations also in absence of significant
process changes. It is thus important, to observe possible
changes, to select model properties reflecting actual variations
of the identified process; possible choices could concern the
parameters of minimally parameterized models, model poles,
frequency responses, power spectra and cross–spectra.

Another desirable feature usually absent in identified models
concerns the physical significance of the models; the models
obtained by means of identification techniques can be very
accurate but usually lack, differently from those obtainedby
means of traditional modeling techniques, a direct physical
meaning. This requirement and the previous one lead often
to the use, in SHM applications, of the spectra and cross–
spectra associated with the identified multivariate models. This
information reflects well defined physical properties of the
structures and can be easily linked to project–level evaluations.

Remark 1. Relation (2) is universally considered as the
standard definition of multivariate AR models. This definition
is, however, afflicted by severe conceptual limitations because
of the implicit assumption that all channels have the same
memory; thus the order of the processes described by these
models can assume only values multiples of the model memory.
More general and minimally parameterized representationsof
multivariate systems have been described in [7] and [11] and
could be used also in the SHM context to obtain more physically
precise descriptions of complex structures. Good results can
usually be obtained also by using basic AR models like (2), (5).

w(t)

y∗(t)
e(t) y(t)Q(z−1)−1

Figure 2. Structure of AR+noise models

2.2 Advanced AR modeling: AR+noise representations

Traditional AR models are endowed with many advantages that
range from the easy estimation of their parameters by means
of unbiased and efficient algorithms like LS to the stabilityof
the associated optimal predictor (independent from the stability
of the model). These models can be interpreted according to
the scheme reported in Figure 1 where the equation errore(t)
is considered as input of a filter; in these models the equation
error e(t) is the only tool available to balance the different
causes of misalignment between the model and the data (non
linearities, process noise, observation errors, non stationarity
etc.). A more sophisticated way to manage this inevitable
misalignment consists in introducing a specific description of
the observation errors, separating these errors from thosedue to
other causes. AR+noise models consist in AR models whose
output is considered as affected by an additive observation
error (Figure 2). AR+noise models are thus described by the
equations

y∗(t) = Q1y∗(t −1)+ . . .+Qµ y∗(t −µ)+e(t) (20)

y(t) = y∗(t)+w(t) (21)

where
w(t) = [w1(t)w2(t) . . . wm(t) ]

T (22)

is a vector whose elementswi(t) (i = 1, . . . ,m) are white
processes mutually uncorrelated, uncorrelated with the entries
of e(t), with null expected value, E[wi(t)] = 0, and with
variancesσ2

wi; the covariance matrix ofw(t) is thus diagonal

Σw = diag
[

σ2
w1 σ2

w2 . . . σ2
wm

]
. (23)

More general AR+noise schemes could consider additive
coloured noise on the observations and/or the presence of
correlations between the observation noises. The interest, in
SHM implementations, of the first extension is modest while the
second one, as it will be shown in the sequel, can be necessary
for a realistic description of some sensors.

The identification of AR+noise models is a job more complex
than the identification of AR models because it is necessary to
estimate not only the parameters ofQ(z−1) and the covariance
matrix Σe but also the covariance matrixΣw and, in this
stochastic context, LS would lead to biased estimates.

The parameters of AR+noise models could be estimated
by means of IV algorithms; the disadvantage of this solution
concerns the uncertainty of the estimates and the fact that
the variances of the equation errors and of the observation
noise are not estimated. Another approach could be based
on the mapping of the AR+noise identification problem into
an EIV identification scheme, more precisely into the Frisch
scheme that allows estimating, by means of a search procedure,
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both model parameters and the observation and process noise
variances [12]. The estimate of AR+noise models by means
of a Frisch–scheme approach has been described in [13] for
the univariate case but can be extended to the multivariate
context. An approach of this kind has the advantage of leading
to a congruent solution and to be intrinsically suitable forfault
diagnosis; a possible disadvantage concerns the fact that the
stability of the obtained model is not assured. Another way to
solve the problem could rely on the use of compensated least
squares schemes, like BELS algorithms [14]. These algorithms
are iterative and, usually, fast but they do not assure neither
congruence nor convergence.

An approach suggested by filtering techniques applied in
speech enhancement relies on the separate estimate of the
variance of the additive observation noise from sequences
collected in absence of signals (silent frames). This estimate
is then used to compensate the presence of the observation
noise reducing thus the AR+noise estimation problem to the
estimation of an AR model. A procedure of this kind can be
adopted also in the multivariate case and effectively applied in
the SHM context. It allows also the extension to more general
contexts where not all observation errors are independent and
this can be of practical relevance in SHM. To illustrate this
two–step procedure, consider, for an AR+noise process, the
covariance matrix

Σ∗ = lim N→∞
H∗TH∗

N
(24)

whereH∗ has the same structure asH and is constructed with
samples,y∗(t), of the AR part of the model. Because of
the relationy(t) = y∗(t) +w(t) and of the assumption of non
correlation betweene(t) andw(t), and, consequently, between
y∗(t) andw(t), it follows that

Σ = lim N→∞
HTH

N
= Σ∗+Σoe (25)

whereΣoe denotes the covariance matrix of observation errors

Σoe= diag
[

σ2
w1Iµ . . . σ2

wmIµ
]
. (26)

If the covariance matrix of the observation errors,Σw, is known,
it is possible to deduce, from (25),Σ∗ and, consequently,
reduce the problem to the identification of an AR process by
substitutingHTH with NΣ. In practical applications relation
(25) will be applied to the available sample quantities by means
of the relation

H∗TH∗ = HTH −NΣoe (27)

and since, under the assumption of non correlation between
e(t) and w(t), asymptoticallyHTy◦i = H∗Ty∗◦i , the minimal–
variance and asymptotically unbiased estimate of the AR model
parameters is

θ̂i = (HTH −NΣoe)
−1HTy◦i (i = 1, . . . ,m). (28)

An estimate ofΣw can be obtained by computing the sample
covariance matrix of output sequences that do not contain any
useful information; this can be verified by means of a whiteness
test on the components ofy(t). The deduction ofΣoe from Σw is
then immediate.

Remark 2. The subtraction from the main diagonal ofΣ of
the diagonal elements ofΣw (in blocks of µ elements) can
lead to non positive definite matrices(HTH − NΣoe) and/or
to estimate unstable models. The reasons derive both from
the approximation associated with the use of sample quantities
and from the assumption of zero off–diagonal elements inΣoe.
When this happens it is possible to modify relation (28) as
follows

θ̂i = (HTH −kNΣoe)
−1HTy◦i (i = 1, . . . ,m) (29)

where 0< k < 1 is chosen in order to respect the condition
(HTH −kNΣoe)> 0 and the stability constraint.

3 THE SHM SYSTEM IN THE TOWER OF THE ENGI-
NEERING SCHOOL OF BOLOGNA UNIVERSITY

The building where the tower is located has been designed by
the Italian architect Giuseppe Vaccaro and was built between
1933 and 1935 (Figure 3). The tower is actually an archive
capable of holding over 60,000 volumes, arranged on movable
metal shelves. It is approximately 45 meters high and its
structure is characterized by 4 rectangular columns which
support nine concrete slabs. The measures are performed by
means of a prototype of the advanced SHM system developed by

Figure 3. The Engineering School building

Figure 4. The TSM02 sensor

Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011 2503



Teleco, the SHM602 [15], compliant with the recommendations
reported in [16] and [17].

The main components of this system consist in a con-
troller/storage unit TSD10 and in intelligent sensing units
TSM02 (Figure 4) connected to the controller by means of a
serial bus. Every sensing unit can send the measures of the
acceleration on two orthogonal axes and that of the temperature;
the sampling frequency can be selected by the user at 20 Hz,
40 Hz or 80 Hz. These sensors rely on MEMS sensors and on
proprietary signal processing techniques and perform alsothe

Figure 5. Accelerometer locations in the tower

Figure 6. Accelerometer locations in the selected floors

identification of AR+noise models [13]. The dynamic behavior
of the tower is monitored by means of four TSM02 units (8
accelerometers) installed in four different floors (M1-M4 in
Figures 5 and 6). Their locations have been carefully chosen
in order to avoid nodal points (zero response points) on the first
several vibration mode shapes. Four piezoelectric single–axis
accelerometers (denoted as A1-A4 in Figures 5 and 6) have been
temporarily installed in two of the previous locations for control
purposes. A first set of measures has concerned the evaluation of
the signal variances in absence of excitations; this can be easily
performed since the building is located in a quiet area, outside
traffic patterns. The results, referred to acceleration measures in
mg(in term of variances and covariances), are reported in Table
1 where it can be observed that the noises on thex andy axes of
the same unit exhibit a non negligible correlation; the covariance
values associated with accelerometers of different sensors (not
reported in Table 1) are, on the contrary, quite modest, morethan
one order of magnitude lower. This observation can be easily
explained since the two accelerometers of TSM02 sensors are
physically allocated on the same MEMS chip. It can also be
observed that the obtained variances are perfectly alignedwith
the nominal values of TSM02 units with the exception of the
fourth sensor whose noise level is approximately 20% lower.

The model actually used considered as outputs all 8 available
channels and the memory selected for the model wasµ =
10 (order n = 80). The model described in the following
is limited, however, to four channels in order to comply
with space constraints without omitting any feature of interest
of the adopted procedure. The measures considered in the
construction of this reduced model are reported in Table 2. The
identification has been performed by using AR+noise models
and the covariance matrix of the observation noise has been
constructed on the basis of the measures reported in Table 1.
Since two channels of the same sensor have been inserted in
the model, considering a diagonal covariance matrixΣw for
the additive observation noise would not be congruent with the
measured covariances; thus the evaluation ofΣw that has been
actually used is

Σw =




0.1087 −0.0421 0 0
−0.0421 0.0952 0 0

0 0 0.0986 0
0 0 0 0.0965


 (30)

Table 1. Variances and covariances of measure noise

σ2
x σ2

y σxy

Sensor M1 0.1087 0.0952 -0.0421
Sensor M2 0.0993 0.0986 -0.0379
Sensor M3 0.1061 0.0965 -0.0373
Sensor M4 0.0773 0.0771 -0.0315

Table 2. Model outputs

Channel 1 Channel 2 Channel 3 Channel 4
y1 y2 y3 y4

Sensor M1 x axis y axis - -
Sensor M2 - - y axis -
Sensor M3 - - - y axis
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Figure 7. Power spectra ofy1; measures and model (red)
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Figure 8. Power spectra ofy2; measures and model (red)
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Figure 9. Power spectra ofy3; measures and model (red)
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Figure 10. Power spectra ofy4; measures and model (red)

and congruent variations have been introduced inΣoe that
assumes the following form

Σoe=




0.1087Iµ −0.0421Iµ 0 0
−0.0421Iµ 0.0952Iµ 0 0

0 0 0.0986Iµ 0
0 0 0 0.0965Iµ


 .

(31)
The first data set used for the identification has been recorded
on December 5, 2010 and concerns a small seismic event with
magnitude 3.2 observed at a depth of 15 Km in the area of Castel
San Pietro Terme, at a distance of 28 Km from Bologna.

The tests on the positive definiteness of(HTH −kNΣoe) and
on the stability of the model have shown that 0.51 was the
minimum acceptable value that could be assigned tok; to leave
some margin, the models have been computed assigning tok
one half of the limit value. A comparison between the power
spectra of the four observed sequences and those computed by
means of the identified model is reported in Figures 7–10 where
the scaling of the plots has been selected in order to underline
the frequency peaks.

A second model has been obtained from data recorded on
December 6, 2010 concerning another small seismic event with
magnitude 3.0 observed at a depth of 24 Km in the same area
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Figure 11. Power spectra ofy1; measures and model (red)
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Figure 12. Power spectra ofy2; measures and model (red)
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Figure 13. Power spectra ofy3; measures and model (red)
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Figure 14. Power spectra ofy4; measures and model (red)

as the previous one. The comparison between the power spectra
of the four observed sequences and those computed by means
of the identified model is reported in Figures 11–14. The
significant peak frequencies obtained from these models are
reported in Table 3. It can be observed that the main resonance
frequency along the x axis is approximately 1.75 Hz while a
secondary frequency is around 3.8 Hz; the resonance frequency
along the y axis is approximately 2.4 Hz.

The cross–covariances between the output #2 and the outputs
#1, #3 and #4 obtained with the models identified from the
considered data sets are reported in Figures 15–17 that show
good agreements; the worst result concerns output #1, in fact,
the modes associated to the first output are those excited only
marginally in the considered data sets. Similar results canbe
observed on remaining cross–spectra.

Finally, in Figures 18–19 a comparison between the power
spectra obtained from the MEMS measures ofy1 and y2 and

Table 3. Peak frequencies (Model 1 / Model 2)

Channel 1 1.75 / 1.75 2.45 / 2.425 3.725 / 3.85
Channel 2 2.3 / 2.3 - -
Channel 3 2.3 / 2.3 - -
Channel 4 2.3 / 2.3 - -
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Figure 15. Cross spectra between outputs #2 and #1
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Figure 16. Cross spectra between outputs #2 and #3
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Figure 17. Cross spectra between outputs #2 and #4

those obtained with piezoelectric accelerometers placed in the
same positions is shown. It can be observed that the measures
are very similar in both cases. Even if the noise level of
the measures is greater when MEMS-based sensing units are
considered, the identified models are strongly congruent (see
Figure 20). This confirms the good approximation of the real
process given by the considered models and also the suitability
of the SHM602 system for the performed analysis.

4 CONCLUDING REMARKS

This paper has discussed some of the problems concerning the
identification of multivariate models in SHM and has outlined
the potentialities offered by AR+noise models. It has also
described the measures obtained from the MEMS–based SHM
system Teleco SHM602 installed in the tower of the Engineering
School of Bologna University and the results obtained in
identifying a multivariate AR+noise model from these data.
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